Dry-Farming
in dry-farming, for it makes the farmer independent, in a large measure, of the distribution of the rainfall. The dry-farmer who goes into the summer
ver, only the first step in making the rains of fall, winter, or the preceding year available for plant growth. As soon as warm growing weather comes, water-dissipating forces come into play, and water is lost by evaporation. The farmer must, there
ore water evaporates annually from a free water surface than falls as rain and snow. For that reason many students of aridity pay little attention to temperature, relative humidity, or winds, and simply measure the evaporation from a free water s
from about six to thirty-five times the precipitation. At the same time it must be borne in mind that while such rates of evap
ipitation Annual
hes) (I
Texas 9
Win
ico 14.
t Y
2.84 1
AZ 11.
CA 4.9
tho
4.50
nem
9.51
e, Utah 6
Duc
6.49
evi
9.01
t R
8.47
ra
g 9.81
exico 16.
it is necessary to review briefly the conditions that determine the evapora
tion of w
nitely limited. For instance, at the temperature of freezing water 2.126 grains of water vapor can enter one cubic foot of air, but no more. When air contains all the water possible, it is said to be saturated, and evaporation then ceases. The practical effect of this is the well-known exp
At a temperature of 100 deg F., which is often reached in portions of the dry-farm territory during the growing season, a given volume of air can hold more than nine times as much water vapor as at the temperature of freezing water. This is an exceedingly important principle in dry-farm practices, for it explains the relatively easy possibility of storing water during the fall and win
One Cubic Foot of Air 32 2.126 40 2.862 50 4.089
days, enough water may evaporate to saturate the layer of air immediately upon the soil and around the plants. Whenever, in such cases, the air begins to move and the wind blows, the saturated air is mixed with the larger portion of unsaturated air, and evaporation is again increased. Meanwhile, it must be borne in
ore rapidly will water evaporate into the air. There is no more striking confirmation of this law than the fact that at a temperature of 90 deg sunstrokes and similar ailments are reported in great number from New York, while the people of Salt Lake City are perfectly comfortable. In New York the relative humidity in summer is
inds, and (3) a decrease in the relative humidity. The temperature is higher; the relative humidity lower, and the winds usually more ab
evaporation
ve humidity are favorable. Thus, from a wet soil, evaporation is continually removing water. Yet, under ordinary conditions, it is impossible to remove all the water, for a small quantity is attr
ace. The reason for this reduced evaporation from a wet soil is almost self-evident. There is a comparatively strong attraction between soil and water, which enables the moisture to cling as a thin capillary film around the soi
ed, respectively, 22.63 per cent, 17.14 per cent, and 12.75 per cent of water lost in two weeks, to a depth of eight feet, respectively 21.0, 17. 1, and 10.0 pounds of water per square foot. Similar experiments conducted elsewhere also furnish proof of the correctness of this principle. From this point of view the dry-farmer does not want his soils t
the given conditions evaporation occurs more slowly from soil-water than from pure water. Now, the more fertile a soil is, that is, the more soluble plant-food it contains, the more material will be dissolved in the soil-water, and as a result the more slowly will evaporation take place. Fallowing, cultivation, thorough plowing and manuring, which incre
ation chiefly
wholly at the soil surface, and that very little if any is lost directly by evaporation from the lower soil layers. Other experimenters have confirmed this conclusion, and very recently Buckingham, examining the same subject, found that while there is a very slow upward movement of the soil gases into the atmosphere, the total quantity of the water thus lost by direct evaporation from soil, a foot below the surface, amounted at most to one inch of rainfall in six years. This is insignificant even under semiarid and arid condit
at the land, after being broken, must lie fallow for one or two seasons, until a sufficient amount of moisture has accumulated. Further, the correlative principle is emphasized that
age to a depth of eight feet; that is, the total amount of water held by the two soils was practically identical. Owing to varying cultural treatment, the distribution of the water in the soil was not uniform; one contained 23.22 per cent and the other 16.64 per cent of water in the first twelve inches. During the first seven days the soil th
gion, that great, deep cracks form during hot weather. From the walls of these cracks evaporation goes on, as from the topsoil, and the passing winds renew the air so that the evaporation may go on rapidly. The dry-farmer must go over the land as often as needs be with some implem
ter reaches
well known that evaporation from the soil surface may continue until the soil-moisture to a depth of eight or ten feet or more is depleted. Th
20.06 8.87 3rd foot 19.62 11.03 4th foot 18.28 9.59 5th foot 18.70 11.27
ends to distribute itself uniformly throughout the soil, in accordance with the prevailing conditions and forces. If no water is removed from the soil, in course of time the distribution of the soil-water will be such that the thickness of the film at any point in the soil mass is a direct resultant of the various forces acting at that particular point. There will then be no appreciable movement of the soil-moisture. Such a condition is approximated in late winte
as thick as the particles can hold, the water would pass right through the soil and connect with the standing water below. This, of course, is seldom the case in dry-farm districts. In any soil, excepting one already saturated, the addition of water will produce a thickening of the soil-water film to the full descent of the water. This immediately destroys the conditions of equilibrium formerly existing, for the moisture is not now uniformly distributed. Consequently a process of redistribution begins which continues until the nearest approach to equilibrium is restored
ot with moisture. When the thousands of tiny roots sent out by each plant are recalled. it may well be understood what a confusion of pulls and counter-pulls upon the soil-moisture exists in any cultivated soil. In fact, the soil-water film may be viewed as being in a state of trembling activity, tending to place itself in full equilibrium with the surrounding contending forces which, themselves, constantly change. Were it not that the water film held closely around the soil
the topsoil becomes drier, that is, as the water fihn becomes thinner, there is an attempt at readjustment, and water moves upward to take the place of that lost by evaporation. A
rapid top dr
e thickest film that may be held against gravity. When the film is thinned, it does not diminish the attraction of the soil for water; it simply results in a stronger pull upon the water and a firmer holding of the film against the surfaces of the soil grains. To move soil-water under such conditi
soil and water repel each other. This is shown in the common experience of driving along a road in summer, immediately after a light shower. The masses of dust are wetted only on the outs
the top. The dry soil layer then prevents further loss of water, and the wind because of its intensity has helped to conserve the soil-moisture. Similarly in localities where the relative humidity is low, the sunshine abundant, and the temperature high, evaporation may go on so rapidly that the lower soil layers cannot supply the demands made, and the topsoil then dries out so completely as to form a protective covering against further evaporation. It is on this principle that the native desert soils of the United States, untouched by the plow, and the surfaces of which are sun-baked, are often found to possess large percentages of water at lower depths. Whitney recorded this observation with considerable surprise, many years ago, and other observers have found the same conditions at near
can further the formation of a dry topsoil layer by stirring the soil thoroughly. This assists the sunshine and the air to evaporate the water very quickly. Such cultivation is very desirable for other reasons also, as will soon be discussed. Meanwhile, the water-dissipating forces of the dry-farm sectio
ect of
argely. Ebermayer showed in 1873 that the shading due to the forest cover reduced evaporation 62 per cent, and many experiments since that day have confirmed this conclusion. At the Utah Station, under arid conditions, it was found that shading a pot of soil, which otherwise was subjected to water-dissipating influences, saved 29 per cent of the loss due to evaporation from a pot which was not shaded. This principle cannot be applied very greatly in practice, but it points to a so
as in the forest. Such mulching reduces evaporation, but only in part, because of its shading action, s
ng as a means or checking evaporation disappears almost entirely. It is only wit
yed to make possible the growth of alfalfa and oth
ect of
rough each minute; if two are opened, nearly twice as many may be admitted in the same time; if more gates are opened, the passengers will be able to enter the train more rapidly. The water in the lower layers of the soil is ready to move upward whenever a call is made upon it. To reach the surface it must pass from soil grain to soil grain, and the larger the number of grains that touch, the more quickly and easily will the water reach the surface, for the points of contact of the soil particles may be likened to the gates of the railway station. Now if, by a thorough stirring and loosening of the topsoil, the number of points of contact between the
per cent; Johnson, in 1878, confirmed the truth of the principle on American soils, and Levi Stockbridge, working about the same time, also on American soils, found that cultivation diminished evaporation on a clay soil about 23 per cent, on a sandy loam 55 per cent, and on a heavy loam nearly 13 per cent. All the early work done on this subject was done under humid conditions, and it is only in recent years that confirmation of this important principle has been obtained for the soils of the dry-farm regi
ry extensive practice, yet it is well to bear the principle in mind. The practice of harvesting dry-farm grain with the header and plowing under the high stubble in the fall is a phase of cultivation for water conservation that deserves special notice. The straw, thus incorporated into the soil, decomposes quite readily in spite of the popular notion to the contrary, and makes the soil more porous, and, therefore, more effectively worked for the prevention of evaporation. When this practice i
of cul
water loss. Others form only a thin hard crust, below which lies an active evaporating surface of wet soil. Soils which dry out readily and crumble on top into a natural mulch should be cultivated deeply, for a shallow cultivation does not extend beyond the naturally formed mulch. In fact, on certain calcareous soils, the surfaces of which dry out quickly and form a good protection against evaporation, shallow cultivations often cause a greater evaporation by disturbing the almost perfect natural mulch. Clay or sand soils, which do not so well form a natural mulch, will respond much better to shallow cultivations. In general, however, the deeper the cultivation, the more effective it is in reducing
cultivat
g the first week, over 60 per cent occurred during the first three days. Cultivation should, therefore, be practiced as soon as possible after conditions favorable for evaporation have been established. This means, first, that in early spring, just as soon as the land is dry enough to be worked without causing puddling, the soil should be deeply and thoroughly stirred. Spring plowing, done as early as possible, is an excellent practice for forming a mulch against evaporation. Even when the land has been fall-plowed, spring plowing is very beneficial, though on fall-plowed land the disk harrow is usually used in early spring, and if it
with an iron tooth harrow, the teeth of which are set to slant backward in order not to tear up the plants. The loose earth mulch thus formed is very effective in conserving moisture; and the few
the land should be disked and. then harrowed. Every device should be used to secure the formation of a layer of loose
causes combine to permit the
to restore the numerous capillary connections with the lower soil layers through which water escapes. Careful watch should
shown repeatedly that light rains draw moisture very quickly from soil layers many feet below the surface. The rainless summer is not feared by the dry-farmer whose soils are fertile and rich in moisture. It is imperative that at the very earliest moment after a spring or summer ra
d. Cultivation must he so continuous as to make weeds an impossibility. The belief that the elements added to the soil by weeds offset the loss of soil-moisture is wholly erroneous. The growth of weeds on a fallow dry-farm
he other small grains, generally, the damage done to the crop by harrowing late in the season is too great, and reliance is therefore placed on the shading power of the plants to prevent undue evaporation. However, until the wheat and other grains are ten to twelve inches high, it is
is. Campbell and others in America have proposed that a drill hole be closed every three feet to form a path wide enough for a horse to travel in and to pull a large spring tooth cultivator' with teeth so spaced as to strike between the rows of wheat. It is yet doubtful whether, under average conditions, such careful cultivation, at least of grain crops, is justified by the returns. Under conditions of high aridity, or
d Co., Montana, 1909. Yie
stirring of the topsoil. Cultivation! cultivation! and more cultivation! must be th