icon 0
icon TOP UP
rightIcon
icon Reading History
rightIcon
icon Log out
rightIcon
icon Get the APP
rightIcon

The Earth as Modified by Human Action

Chapter 10 THE WATERS. No.10

Word Count: 58166    |    Released on: 01/12/2017

n from the Waters-Gr

Lincolnshire Fens-Incu

f Sea-dikes-Gain and

osits on the Coast of

ing of the Zuiderzee-

therlands-Ancient Hydr

Torlonia-Incidental Co

rshes-Agricultural D

eographical Effects o

d Canals-Antiquity of I

Egypt-Irrigation in

tion-Water withdr

fects of Rice-culture-S

rranean Waters-Arte

recipitation-Inundati

Rivers-Glacier Lakes-

dations-Dikes of the

in Tuscan Maremma-Im

st of the

ially won fr

en the cohesion of the soil, he has promoted the deposit of solid matter in the sea, thus reducing the depth of marine estuaries, advancing the coast-line, and diminishing the area covered by the waters. He has gone beyond this, and invaded the realm of the ocean by constructing within its borders wharves, piers, light-houses, breakwaters, fortresses, and other facilities for his commercial and military operations; and in some countries he has permanently rescued from tidal overflow, and even from the very bed of the deep, tracts of ground ext

erate such depression. There are, however, cases where, in spite of great deposits of sediment by rivers, the coast is rising. Further, the manifestation of the internal heat of the earth at any given point is conditioned by the thickness of the crust at such point. The deposits of rivers tend to augment that thickness at their estuaries. The sediment of slowly-flowing rivers emptying into shallow seas is spread over so great a surface that we can hardly imagine the foot or two of slime they let fall over a wide area in a century to form an element among even the infinitesimal quantities which compose the terms of the equations of nature. But some swift rivers, rolling mountains of fine earth, discharge themselves into deeply scooped gulfs o

ce. The great rivers of the earth, taken as a whole, transport sediment from the polar regions in an equatorial direction, and hence tend to increase the equatorial diameter, and at the same time, by their inequality of action, to a continual displac

or waves, stirred to unusual depths by the wind, may gradually wear down the line of coast, or they may form shoals and coast-dunes by depositing the sand they have rolled up from the bottom of the ocean. These latter modes of action are slow in producing effects sufficiently important to be noticed in general geography, or even to be visible in the representations of coast-line laid down in ordinary maps; but they nevertheless form conspicuous features in local topography, and they are attended with consequences of great moment to the material and the moral interests of men. The forces which produce these limited results are a

ave imposed upon engineers tasks of a character which a century ago would have been pronounced, and, in fact, would have been, impracticable; but n

d here shall thy proud waves be stayed!" [Footnote: It is, nevertheless, remarkable that in the particular branch of coast engineering where great improvements are most urgently needed, comparatively little has been accomplished. I refer to the creation of artificial harbors, and of facilities for loading and discharging ships. The whole coast of Italy is, one may almost say, harborless and even, wharfless, and there are many thousands of miles of coast in

of Material

ent architectural art, and demand the exercise of far greater constructive skill and involve a much heavier pecuniary expenditure than would now be required for the building of the tomb of Cheops. It is computed that the great pyramid, the solid contents of which when complete were about 3,000,000 cubic yards, could be erected for

is branch of my subject, I shall confine myself to such as are designed either to gain new soil by excluding the waters from grounds which they had permanently or occasionally covered, or to resist new

ity of Mexico by the lakes in its vicinity, besides subsidiary works of great extent, has a cutting h

miles long. Those of the silver mines of Saxony are scarcely less extensive, and the

r about 100,000,000 cubic yards, and those of the Ganges Canal, which, with i

acombs of Rome, in part, at least, originally quarries, have a lineal extent of five hundred and fifty miles. The catacombs

, wholly through solid rock, amounted to more than 900,000 cub

ay, 480,000 cubic yards of stone were removed; that the earth excavated in the construction of English railways up to that date amounted to a hundred and fifty million cubic yards, and tha

, or about 450,000 cubic yards, was thrown down at Carrara by one blast, and two hours after, another

e shall have a yearly amount of excavation for this one object equal to more than thirty times the volume of the pyramid of Cheops. These are wonderful achievements of human industry; but the rebuilding of Chicago within a single year after the great fire-not to speak of the e

f Lincolns

d methods were, at least in part, borrowed from the example of like improvements in Holland, and it is, in difficulty and extent, inferior to works executed for the same purpose on the opposite coast of the North Sea, by Dutch, Frisie, and Low German engineers. The space I can devote to such operations will be b

efore any considerable extent of seacoast was diked. Several hundreds of those terrible inundations are recorded, and in many of them the loss of human lives is estimated as high as one hundred thousand. It is impossible to doubt that there must be enormous exaggeration in these numbers; for, with all the reckless hardihood shown by men in braving the dangers and privations attached by nature to their birthplace, it is inconceivable that so dense a population as such wholesale destruction of life supposes could find the means of subsistence, or content itself to dwell, on a territory liable

landers, a few centuries after the commencement of the Christian era. The silence of the Roman historians affords a strong presumption that this art was unknown to the inhabitants of the Netherlands at the time of the Roman invasion, and the elder Pliny's des

of Se

that in Pliny (Hist. Nat. xxxvi. 24), where it is said that the Tyrrhenian Sea was excluded from the Lucrino Lake by dikes. Dugdale, whose enthusiasm for his subject led him to believe that recovering from the sea land subject to be flooded by it, was of divine appointment, because God said: "Let the waters under the heavens be gathered together unto one place and let the dry land appear," unhesitatingly ascribes the reclamation of the Lincolnshire fens to the Romans, though he is able to cite but one authority, a passage in Tacitus's Life of Agricola which certainly has no such meaning, in support of the assertion.-History of Embankment and Drainage, 2d editio

s alleged that, in general, not ten per cent. of the powder manufactured

s become, in less than two generations, nearly as obsolete as the sling and stone of the shepherd, and attack and defence now begin at distances to which, half a century ago, military reconnaissances hardly extended. Upon a partial view of the subject, the human race seems destined to become its own executioner-on the one hand, exhausting the capacity of the earth to furnish sustenance to her taskmaster; on the other, compensating diminished production by inventing more efficient methods of exterminating the consumer. At the present moment, at an epoch of

le is rarely conquered till it has deserved subjugation.] The Lowlanders are believed to have secured some coast and bay islands by ring-dikes and to have embanked some fresh-water channels, as early as the eighth or ninth century; but it does not appear that sea-dikes, important enough to be noticed in historical records, were constructed on

of Land in t

osed localities totally, destroyed by the violence of the sea, and the drained lands again flooded. In some cases the soil thus painfully won from the ocean has been entirely lost; in others it has been recovered by repairing or rebuilding the dikes and pumping out the water. Besides this, the weight of the dikes gradually sinks them into the soft soil beneath, and this loss of elevation must be compensated by raising the surface, while the increased burden thus added tends to sink them still lower. "Tetens declares," says Kohl, "that in some places the dikes have gradually sunk to the depth of sixty or even a hundred feet." [Footnote: Die Inseln und Marschen der He

iles in length, the maintenance of which costs, in ordinary years, more than a million guilders [above $400,000] ... The annual expenditure

t of Zeeland is due to the energy of Caspar de Robles, the Spanish governor of that province, who in 1570 ordered the construction of these works at th

d by Incurs

ot less than six hundred and forty thousand bunder, or one million five hundred and eighty-one thousand acres, of fen and marsh have been washed away, or rather deprived of their vegetable surface and covered by water; and thirty-seven thousand bunder, or ninety-one thousand four hundred acres, of recovered land, have been lost by the destruction of the dikes which protected them. [Footnote: Staring, Voormaals en Thans, p. 163.] The average value of land gained from the sea is estimated at about

eat effort to prevent the undermining and washing away of the dikes, it is shoaling at another by its own deposits, and exposing, at low water, a gradually widening belt of sands and ooze. The coast-lands selected for diking-in are always at points where the sea is depositing productive soil. The Eider, the Elbe, the Weser, the Em

e Dep

flow or other current. ... The powerful tidal currents, flowing and ebbing twice a day, drift sand with them. They scoop out the bottom at one point, raise it at another, and the sand-banks in the current are continually shifting. As soon as a bank raises itself above low-water mark, flags and reeds establish themselves upon it. The mechanical resistance of these plants checks the retreat of the high water and favors the deposit of the earth suspended in it, and the formation of land goes on with surprising rapidity. When it has risen to high-water level, it is soon covered with grasses, and becomes what is called schor in Zeeland, kwelder in Friesland. Such grounds are the foundation

of the N

find their way to the ocean. In the twelfth century these islands were much smaller and more numerous than at present. They have been gradually enlarged, and, in several instances, at last connected by the extension of their system of dikes. Walcheren is formed of ten islets united into one about the end of the fourteenth century. At the middle of the fifteenth century, Goeree and Overflakkee consisted of separate islands, containing altogether about ten thousand acres; by means of above sixt

ores and islands, sea and river dikes have been constructed on a grander and more imposing scale than in any other country. The whole economy of the art has been there most thoroughly studied, and the literature of the subject is very extensive. For m

long-continued west winds drove it landwards. The extraordinary fertility of this soil and its security as a retreat from hostile violence attracted to it a considerable population, while its want of protection against inundation exposed it to the devastations of which the chroniclers of the Middle Ages have left such highly colored pictures. The first permanent dwellings on the coast-flats were erected upon artificial mounds, and many similar precarious habitations still exist on the unwalled islands and shores beyond the chain of dikes. River embankments, which, as is familiarly known, have from the earliest antiquity been employed in many countries where sea-dikes are unknown, were probably the first works of this character constructed in the Low Countr

lood-tides of mild weather, and to retain the slime deposited by very high water, which would otherwise be partly carried off by the retreating ebb. The elevation of the soil goes on slowly after this; but when it has at last been sufficiently enriched, and raised high enough to justify the necessary outlay, permanent dikes are constructed by which the water is excluded at all seasons. These embankments are constructed of sand from the coast-dunes or from sand-banks, and of earth from the mainland or from flats outside the dikes, bound and strengthened by fascines, and provided with sluices, which are generally founded on piles and of very expen

ave been driven down along the coast of Friesland, where there are no dunes, for a distance of one hundred and fifty miles. The piles are bound together by strong cross-timbers and iron clamps, and the interstices filled with stones. The ground adjacent to the piling is secured with fascines, and at exposed points heavy blocks of stone are heaped up as an additional protection. The earth-dike is built behind the mighty bulwark of this breakwater, and its foot also is fortified with stones." ... "The great Helder dike is about five miles long and forty feet wide at the top, along which runs a good road. It slopes down two hundred feet into the sea, at an angle of forty degrees. The highest waves do not reach the summit, the lowest always cover its base. At certain distances

ression from geological causes.] but the better opinion seems to be that it is, in most cases, due merely to the consolidation and settling of the earth from being more effectually dried, from the weight of the dikes, from the tread of men and cattle, and from the movement of the heavy wagons which carry off the crops. [Footnote: The shaking of the ground, even when loaded with large buildings, by the passage of heavy carriages or artillery, or by the march of a body of cavalry or even infantry, shows that such causes may produce important mechanical effects on the condition of the soil. The bogs in the Netherlands, as in most other countries, contain large numbers of fallen trees, buried to a certain depth by earth and vegetable mould. When the bogs are dry enough to serve as pastures, it is observed that trunks of these ancient trees rise of themselves to the surface. Star

lower rail of a fence thus gradually raised a foot or even two feet above the ground. This rising of stones and fences is popularly ascribed to the action of the severe frosts of that climate. The expansion of the ground, in freezing, it is said, raises its surface, and, with the surface, objects lying near or connected with it. When the soil thaws in the spring, it settles back again

a slow sinking of the northere provinces of Holland. Laveleye (Affaissement du sol at envasement des fleuves survenus dans les temps historiques, 1859), upon a still fuller investigation, arrives at the same conclusion. The eminent geologist Staring, however, who brie

off in the short interval between ebb and flow, and because the moisture of the saturated sub-soil is always rising by capillary attraction. Whenever, therefore, the soil has sunk below the level I have mentioned, and in cases where its surface has never been raised above it, pumps, worked by wind or some other mechanical power, must be very frequently employed to keep the land dry enough for pasturage and cultivation. [Footnote: The elevation of the lands enclosed by dikes-or polders, as they are called in Holland-above low-water mark, depends upon the height of the tides or, in other words, upon the difference between ebb and floo

F THE LAKE

ke of Haarlem, and for this purpose some of the most powerful hydraulic engines over constructed were designed and executed. [Footnote: The principal engine, of 500 horse-power, drove eleven pumps with a total delivery of 31,000 cubic yards per hour.-Wild, Die Netherland, i., p. 87.] The origin of this lake is unknown. It is supposed by some geographers to be a part of an ancient bed of the Rhine, the channel of which, as there is good reason to believe, has undergone great changes since the Roman inva

em, and to unite them all into a single lake. Popular tradition, it is true, ascribes the formation of the Lake of Haarlem to a single irruption of the sea, at a remote period, and connects it with one or another of the destructive inundations of which the Netherland chronicles describe so many; but on a map of the year 1531, a chain of four smaller waters occupies ne

rlem were raised proportionally and driven southwards, while winds from the south tended to create a flow in the opposite direction. The shores of the lake were everywhere low, and though between the years 1767 and 1848 more than $1,700,000 had been expended in checking its encroachments, it often burst its barriers, and produced destructive inundations. In November, 1836, a south wind brought its waters to the very gates of Amsterdam, and in December of the same year, in a north-west gale, they overflowed twenty thousand acres of land at the southern extremity of the l

he means of supply at different points, such as sand from the coast-dunes, earth and turf excavated from the line of the ring-canal, and floating turf, [Footnote: In England and New England, where the marshes have been already drained or are of comparatively small extent, the existence of large floating islands seems incredible, and has sometimes been treated as a fable, but no geographical fact is better established. Kohl (Inseln und Marschen Schleswig-Holsteins, iii., p. 309) reminds us that Pliny mentions among the wonders

such as Nuphar, Nymphaea, Limnanthemum, Stratiotes, Polygonum, and Potamogeton, fill the bottom with roots and cover the surface with leaves. Many of the plants die every year, and prepare at the bottom a soil fit for the growth of a higher order of vegetation, Phragmites, Acorus, Sparganium, Rumex, Lythrum, Pedicularis, Spiraea, Polystichum, Comarum, Caltha, etc., etc. In the course of twenty or thirty years the muddy bottom is filled with roots of aquatic and marsh plants, which are lighter than water, and if the depth is great enough to give room for detaching this vegetable network, a couple of yard for example, it rises to the surface, bearing with it, of course, the soil formed above it by decay of stems and leaves. New gene

ical agency, and, as I have already said, there is no doubt that the immense extension of the inland seas of Holland in modern times is owing to this and other human imprudences. "Hundreds of hectares of floating pastures," says our author, "whi

s solid enough to keep a pond of fresh water upon it sweet, though the water in which it was swimming had become brackish from the irruption of the sea.

bottom in such shallow water, but form ordinary turf or peat. These processes are so rapid that a thickness of from three to six feet of turf is formed in half a century, and many men have lived to mow grass where they

17.] fascines being everywhere used to bind and compact the mass together. This operation was completed in 1848, and three steam-pumps were then employed for five years in discharging the water. The whole enterprise was conducted at the expense of the state, and in 1853 the recovered lands were offered for sale for its benefit. Up to 1858, forty-two thousand acres had been sold at n

ch covered 11,500 acres and was two feet deeper than the Lake of Haarlem, has been drained, and a

the wisdom of the measure. It has already provided homes and occupation for more than five thousand citizens, and furnished a profitable investment for a private capital of not less than L400,000 sterling or $2,000,000, which has been expended in improvements over and above the purchase money of the soil; and the greater part of this sum, as well as of the cost of drainage, has been paid as a compensation for labor. The excess of governmenta

of the

The seaward half, or that portion lying north-west of a line drawn from Enkhuizen to Stavoren, is believed to have been converted from a marsh to an open bay since the fifth century after Christ, and this change is ascribed, partly if not wholly, to the interference of man with the order of nature. The Zuiderzee communicates with the sea by at least six considerable channels, separated from each other by low islands, and the tide rises within the basi

rial works, is curiously illustrated by the fact that one of the most serious difficulties to be encountered in executing this gigantic scheme is that of procuring brushwood for the fascines to be employed in the embankments. See Diggelen's pamphlet, "Groote Werken in Nederland."] No safe calculations can be made as to the expenditure of time and money required for the execution of this stupendous enterprise, but I believe its practicability is not denied by competent judges, though doubts are entertained as to its financial expediency. [Footnote: The plan at present most in favor is that which proposes the drainage of only a portion of the southern half of the Zuiderzee, which covers

of view, we shall find that they are possessed of no small importance as modifications of the natural condition of terrestrial surface. There is good reason to believe that before the establishment of a partially civilized race upon the territory now occupied by Dutch, Frisic, and Low German communities, the grounds not exposed to inundation were over

und the sources and along the valleys of the rivers by man gave them a more torrential character. The felling of the trees, and the extirpation of the shrubbery upon the fens by domestic cattle, deprived the surface of its cohesion and consistence, and the cutting of peat for fuel opened cavities in it, which, filling at once with water, rapidly extended themselves by abrasion of their borders, and finally enlarged to pools

f Physical Improvemen

ave failed to produce effects upon tidal and other oceanic currents, the range of which may be very extensive. The force of the tidal wave, the height to which it rises, the direction of its currents, and, in fact, all the phenomena which characterize it, as well as all the effects it produces, depend as much upon the configuration of the coast it washes, and the depth of water, and form of bottom near the shore, as upon the attraction which occasions it

Hydrauli

e encroachments of the rivers and the sea, and for reclaiming to the domain of agriculture and civilization soil long covered by the waters. But although the recovery and protection of lands flooded by the sea seems to be an art wholly of Netherlandish

rs of these works had perished. Thus the aqueduct known as the Pont du Gard, near Nimes, which, though not surpassing in volume or in probable cost other analogous constructions of ancient and of modern ages, is yet among the most majestic and imposing remains of ancient civil architecture, is not so much as spoken of by any Roman author, [Footnote: One reason for the silence of Roman writers in respect to great material improvements which had no immediate relat

uatic vegetation to the condition of a marsh, was originally partially drained by natural subterranean outlets in the underlying limestone rock, many of which still exist. But these emissaries, or katavothra, as they are called in both ancient and modern Greek, were insufficient for the discharge of the water, and besides, they were constantly liable to be choked by earth and vegetables, and in such cases the lake rose to a height which produced much injury. To remedy this evil and secure a great accession of fertile soil, at some period anteri

authentic memorials, its level was usually kept by evaporation, or by discharge through subterranean channels, considerably below the rim of the basin which encompassed it, but in the year 397 B.C., the water, either from the obstruction of such channels, or in consequence of increased supplies from unknown sources, rose to such a height as to flow over the edge of the crater, and threaten inundation to the country below by bursting through its walls. To obviate this danger, a tunnel for carrying off the water was pierced at a level much below the height to which it had risen. This gallery, cut entirely with the chisel through the rock for a distance of six thousand feet, or nearly a mile and one-seventh, is still in so good condition as to serve its original

matter upon its exposed bed. Julius Caesar had proposed the construction of a tunnel to lower the bed of the lake and provide a regular discharge for its waters, but the enterprise was not actually undertaken until the reign of Claudius, when-after a temporary failure, from errors in levelling by the engineers, as was pretended at the time, or, as now appears certain, in consequence of frauds by the contractors in the execution of the work-it was at least partially completed. From this imperfect construction, it soon got out of repair, but was restored by Hadrian, and is said to have answered its design for some centuries. [Footnote: The fact alluded to in a note on p. 97, ante, that since the opening of a communication be

ke Celano by P

ies in Europe. Many curious particulars in the design and execution of the original work have been observed in the course of the restoration, but these cannot here be noticed. The difference between the lowest and highest known levels of the surface of the lake is rather more than forty feet and the difference between the areas covered by water at these levels is not less than nine thousand acres. The complete drainage of the lake, including the ground occasionally flooded, will recover, for agricultural occupation, and permanently secure from inundation, about forty-two thousand acres of as fertile soil as any in Italy. [Footnote: Springs rising in the bottom of the lake have materially impeded the process of drainage, and some engineers believe that they will render the complete discharge of the waters impossible.

l than that of the old gallery, and its cross-section is about two hundred and fifteen square feet, allowing a discharge of about 2,400 cubic feet to

mphed over more serious obstacles. This great "victory of peace"-probably the grandest work of physical improvement ever effected by the means, the energy, and the munificence of a single individual-is of no small geographical and economical, as well as sanitary, importance, but it has a still higher moral value as an almost unique example of the exercise of public spirit, courage, and perseverance in the accomplishment of a noble and beneficent enterprise by a private citizen. [Footnote: The drainin

tunnel probably of very ancient construction, and the Valle-Riccia appears to have once been the basin of

circumstances of great difficulty, to drain Lake Agnano near Naples, and a project for the execution of a similar

d by Captain Gilliss as having been executed in Chili, a country to which we should hardly have looked for an improvement of such a nature. The Lake Taguataga was partially drained by cutting through a narrow ridge of

Sea in Hungary have lately bee

heir composition and texture are not such as to expose them to softening and dissolution by the infiltration of the water. If, then, the slope of the banks is considerable, or if the earth of which they are composed rests on a smooth and slippery stratum inclining towards the bed of the lake, they are liable to fall or slide forward when the mechanical support of the water is removed, and this sometimes happens on a considerable scale. A few years ago the surface of the Lake of Lungern, in the Canton of Unterwalden, in Switzerland, was lowered by driving a tunnel about a quarter of a mile long through the narrow ridge, called the Kaiserstuhl, which forms a barrier at the north end of the basin. When the water was drawn off, the banks, which are steep, cracked and burst, several acres of ground slid down

robable results of these projects, Tagliasecchi, Nosti

and being thence conducted into the canals of irrigation, becomes a source of great fertility."-La Proprieta Fondiaria, etc., p.144. The quantity of water escaping from the lakes by infiltration depends much on the hydrostatic pressure on the bottom and the walls of the lake-basins,

ain L

e both to receive and retain the rocks and other detritus brought down by the torrents which empty into them, and to check the impetus of the rushing waters by bringing them to a temporary pause; but if the outlets are lowered so as to drain t

as they are popularly called, are generally the beds of ancient lakes which have

ures of the earth. In the long valleys of the Adirondack range in Northern New York, and in the mountainous parts of Maine, eight, ten, and even more lakes and lakelets are sometimes found in succession, each emptying into the next lower pool, and so all at last into some considerable river. When the moun

as those of Lombardy; she had, however, constructed smaller but more numerous lakes, which the improvidence of man has permitted to disappear. Auguste de Gasparin demonstrated more

Where the forests have not been destroyed, the lakes remain as characteristic features of the geographical surface. But when the woods are felled, these reservoirs are sooner or later filled up by wash from the shores, and of course disappear

ng of

r disadvantages, and, at the same time, the processes by which it is effected are much simpler and more obvious. It has accordingly been practised through the whole historical period, and in recent times operations for this pur

successful employment too frequent, to require description, and I shall content myself, for the moment, with a

use. The most remarkable feature of these operations, and at the same time the process which has been most immediately successful and remunerative, is what is called in Europe the regulation of water-courses, and espec

embankments to confine the waters and prevent them from overflowing and stagnating upon the low grounds which skirt their current. In the course of the Theiss about si

sewhere in France, with the same object. [Footnote: Very interesting and important experiments, on the practicability of washing out the salt from seacoast lands too highly impregnated with

ique et de Geologie agricoles.

e square, with nearly three feet of water.] But there is probably no country where greater improvements of this sort have either been lately effected, or are now in course of accomplishment, than in our own. Not to speak of well-known works on the New Jersey seacoast and the shores of Lake Michigan, the people of the new State of California are engaging in this mode of subduing nature with as much enterprise and e

tural D

portant, than those of much older and more widely diffused modes of resisting or directing the flow of waters, which have been practised from remote antiquity in the interior of all civilized countries. Draining and irrigation are habitually regarded as pur

bandry of nature, serve as dams and reservoirs to collect a larger supply of moisture than the spongy earth can at once imbibe. Besides this, the vegetable mould is, even under the most favorable circumstances, slow in parting with the humidity it has accumulated under the protection of the woods, and the infiltration from neighboring forests contributes to keep the soil of small clearings too wet for the advant

lation which creates a ready demand and a high price for all products of rural industry. Under draining, too, would be most advantageous in damp and cool climates, where evaporation is slow, and upon soils where the natural inclination of surface does not promote a very rapid flow of the surface-waters. All the conditions requir

ts leading to distant points of discharge, superficial waters may be carried off by opening a passage for them through the impervious into the permeable stratum. Thus, according to Bischof, as early as the time of King Rene, in the first half of the fifteenth century, when subsoil drainage was scarcely known, the plain of Paluns, near Marseilles, was laid dry by boring, and Wittwer informs us that drainage is effected at Munich by conducting the superflu

ey strike a stratum of gravel, through which the water readily passes off. This practice has been extensively employed at Paris, not merely for carrying off ordinary surface-water, but for the discharge of offensive and deleterious fluids from chemical and manufacturing establishments. A well of this sort received, in the winter of 1832-'33, twenty thousand gallons per day of the foul water from a starch factory, and the same process was largely used in other factories. The apprehension of injury to common and artesian wells and springs led to an investigation on this subject by Girard and Parent Duchatelet, in the latter year. The report of these gentlemen, published in the Annales des Ponts et Chaussees for 1833, second half-year, is full of curious and instructive facts respecting the position and distribution of the subterranean waters under and near Paris; but it must suffice to say that the report came to the conclusion that, in consequence of the absolute immobi

cal Effects

re loose earth, in the months of December, January, and February, was from two and a half to nearly six times as great as from a like surface of water in the other months. The evaporation from water was from about once and a half to six times as great as from earth. Taking the whole year together, the evaporation from the two surfaces was 199 lines from earth and 536 lines from water. Exp

formula to express the proportionate evaporation from fluid and solid geographical surfaces.] On the other hand, if the volume of water abstracted is great, its removal deprives its basin of an equalizing and moderating influence; for large bodies of water take very slowly the temperature of the air in contact with their surface, and are almost constantly either sending off heat into the atmosphere or absorbing heat from

cal Action

en the frequency and severity of frosts. Accordingly it is a fact of experience that, other things being equal, dry soils, and the air in contact with them, are perceptibly warmer during the season of vegetation, when evaporation is most rapid, than moist lands and the atmospheric stratum resting upon them. Instrumental observation on this special point has not yet been undertaken on a large scale, but still we have thermometric data sufficient to warrant the general conclusion, and the influence of drainage in diminishing the frequency of frost appears to be even better established than a direct increase of atmospheric temperature. The steep and dry uplands of the Green Mountain range in New England o

therwise be vaporized by it, and, at the same time, by drying the soil above them, they increase its effective hygroscopicity, and it consequently absorbs from the atmosphere a greater quantity of water than it did when, for want of under-drainage, the subsoil was always humid, if not saturated. [Footnote: Mangon thinks that the diminution of evaporation by agricu

ion, and the condensation of atmospheric vapor thus produced is attended with the manifestation of heat.] Under-drains, then, contribute to the dryness as well as to the warmth o

raining Lake

y or fifty miles more to the north. In comparing these two series of observations, it is found that towards the end of 1852, when the draining of the lake was finished, and the following summer had completely dried the newly exposed soil-and, of course, greatly diminished the water-surface-a change took place in the relative temperature of those two stations. Taking the mean of each successive period of five days, from 1845 to 1852, both inclusive, the temperatu

water and the influence of the lake, as a reservoir of warmth accumulated in summer and gradually given out in winter, was of course lost by its drainage. Doubtless the quantity of moisture contained in the atmosphere has been modified by the same cause, but it does not appear that observations have been made upon this point. Facts lately observed by Glaisher tend to prove an elevation of not far from two d

ources of supply. Consequently, in wet seasons, or after heavy rains, a river bordered by artificially drained lands receives in a few hours, from superficial and from subterranean conduits, an accession of water which, in the natural state of the earth, would have reached it only by small instalments after percolating through hidden paths for weeks or even months, and would have furnished perennial and comparatively regular contributions, instead of swelling deluges, to its channel. Thus, when human impatience rashly substitutes swiftly acting artificial contrivances fo

perficial strata, whether by open ditches or by underground tubes or drains, has the same effect as clearing off the forest in depriving the subterranean waters of accessions which they would otherwise receive by infiltration, and in proportion as the sphere of such operation is extended, their influence will make itself felt in the diminished supply of water in

f by new channels, and is in general carried off more rapidly than before. Must not this fact exercise an influence on the regime of springs w

Cornwall that deep mines are more free from water in well-drained districts than in those wher

nsen, Torv og T

ological Effects of Aqu

na

-Supply of Constantinople, by Mr. Homes, of the New York State Library, in the Albany Argus of June 6, 1872. The system of aqueducts for the supply of water to that city was commenced by Constantine, and the great aqueduct, frequently ascribed to Justinian, which is 840 feet long and 112 feet high, is believed to have been constructed during the reign of the former emperor.] Similar effects must have followed from the construction of the numerous aqueducts which supplied ancient Rome with such a profuse abundance of water. [Footnote: The unhealthiness of the Roman Campagna is ascribed by many medi

g off water which would otherwise stagnate on the surface, and, on the other hand, like aqueducts, they render the neighboring soil cold and moist by the percolation of water through their embankments; [Footnote: Sismondi, speaking of the Tuscan canals, observes: "But inundations are not the only damage caused by the waters to the plains of Tuscany. Raised, as the canals are, above the soil, the water percolates through their banks, penetrates every obstruction, and, in spite of all the efforts of industry, sterilizes and turns to morasses fields which nature and the richness of the soil seemed to have designed for the most abundant harvests. In ground thus pervaded with moisture, or rendered COLD, as the Tuscans express it, by the filtration of the canal-water, the vines and the mulberries, after having for a few years yielded fruit of a saltish taste, rot and perish. The wheat decays in the ground, or dies as soon as it sprouts. Winter crops are given up, and summer cultivation tried for a time; but the inc

y of Irr

ntions which the last four centuries have bestowed upon man.] The improvements of the savage races whose history we can distinctly trace are borrowed and imitative, and our theories as to the origin and natural development of industrial art are conjectural. Of course, the relative antiquity of particular branches of human industry depends much upon the natural character of soil, climate, and spontaneous vegetable and animal life in different countries; and while the geographical influence of man would, under given circumstances, be exerted in one direction, it would, under different conditions, act in an opposite or a diverging line. I have given some reasons for thinking that in the climates to which our attention has been chiefly directed, man's first interference with the natural arrangement and disposal of the waters was in the way of drainage of

must soon have been felt, and its introduction into mountainous regions like Armenia must have been immediately followed by a system of terracing, or at least scarping the hillsides. Pasture and meadow, indeed, may be irrigated even when the surface is both steep and irregular, as may be observed abundantly on the Swiss as well as on the Piedmontese slope of the Alps; but in dry climates, pl

ng the whole period of their growth. As fast as the water retires by the subsidence of the annual inundation, the seed is sown upon the still moist, uncovered soil, and irrigation begins at once. Upon the Nile, you hear the creaking of the water-wheels, and sometimes the movement of steam-pumps, through the whole night, while the poorer cultivators unceasingly ply the simple shadoof, or bucket-a

fty miles.] The surface of Palestine, for example, is composed, in a great measure, of rounded limestone hills, once, no doubt, covered with forests. These were partially removed before the Jewish conquest. [Footnote: "Forests," "woods," and "groves," are frequently mentioned in the Old Testament as existing at particular places, and they are often referred to by way of illustration, as familiar objects. "Wood"

its which characterized their ages and their country.] When the soil began to suffer from drought, reservoirs to retain the waters of winter were hewn in the rock near the tops of the hills, and the declivities were terraced. So long as the cisterns were in good order, and the terraces kept up, the fertility of Palestine was unsurpassed, but when misgovernment and foreign and intestine

or many centuries, that I found ten feet of water in it in June, 1851.] In primitive ages, the precipitation of winter in these hilly countries was, in great part, retained for a time in the superficial soil, first by the vegetable mould of the forests, and then by the artificial arrangements I have described. The water imbibed by the earth was partly taken up by direct evaporation, partly absorbed by vegetation, and partly carried down by infiltration to subjacent str

nerally formed by damming the outlets of natural valleys; and the dams average half a mile in length, though some of them are thirty miles long and form ponds covering from 37,000 to 50,000 acres. The areas of these reservoirs alone considerably increase the water-surface, and each one of them irrigates an extent of cultivated ground much larger than itself. Hence there is a great augmentation of humid surface from those constructions. [Footnote: The present government of India obtains the same result more economically and advantageously by constructing in many provinces of that vast empire canals of great length and capacity, whic

hat canals now in construction will water as much more. The Indian irrigation canals are generally navigable, some of

al spread of the inundation increased. See Smith's Dictionary of Geography, article "Aegyptus". But the industry of the Egyptians in the days of the Pharaohs and the Ptolemies carried the Nile-water to large provinces, which have now been long abandoned and have relapsed into the condition of desert. "Anciently," observes the writer of the article "Egypt" in Smith's Dicti

economically watered, and irrigation and cultivation are therefore at present confined to an area of seven thousand square miles, nearly the whole of which is regularly and constantly watered when not covered by the inundation, except in the short interval between the harvest and the rise of the waters. For nearly half of the year,

ubtless spread through the entire valley in a few years.] But the immediate effect of discontinuing irrigation would be, first, an immense reduction of the evaporation from the valley in the dry season, and then a greatly augmented dryness and heat of the atmosphere. Even the almost constant north wind-the strength of which would be increased in consequence of these changes-would little reduce the temperature of the narrow cleft between the burning mountains which hem in the channel of the Nile, so that a single year would transform the most fertile of soils to the most barren of deserts, and render uninhabitable a territory that irrigation makes capable of sustaining as dense a population as has ever existed in any part of the world. [Footnote: Wilkinson states that the total population, which, two hundred years ago, was estimated at 4,000,000, amounted till lately to only about 1,800,000 souls, having been reduced since the year 1800 from 2,500,000 to less than 2,000,000.-Handbook for Travellers in Egypt. p. 10. The population at the end of the year 1869 is computed at 5,215,000.-Boll

o marshes covered with aquatio vegetation. By canals and embankments, man has done much to modify the natural distribution of the waters of the Nile; yet the annual inundation is not his work, and the river must have overflowed its banks and carried spontaneous vegetation with its waters, as well before as since Egypt was first occupied by

. 27 degrees 45 minutes, was originally a morass. This morass was doubtless in great part covered with trees, and hence, in the most ancient hieroglyphical records, a tree is the sign for the cultivated land between the desert and the channel of the Nile. In all probability, the real change effected by human ar

taly, and perhaps the marcite or winter meadows of Lombardy; but irrigation is more or less employed throughout almost the entire basin of

n the very borders of glaciers are freely irrigated, and on the Italian slope of the Alps water is applied to meadows at heights exceeding 6,000 feet. The summers in Northern Italy, though longer, are very often not warmer than in the Northern United States; and in ordinary years, the summer rains are as frequent and as abundant in the former country as in the latter. [Foo

to some unknown point of discharge; but this circumstance alone is not a sufficient solution. It is not possible that the habits of vegetables, grown in countries where irrigation has been immemorially employed, have been so changed that they require water under conditions of soil and climate where their congeners, which have not been thus indulgently treated, do not It is a remarkable fact

ative heavens. And yet the heat of the sun's rays, as measured by sensation, and, at the same time, the evaporation, are greater than they would be with the thermometer at the same point in America. I have frequently felt in Italy, with the mercury below 60 degrees Fahrenheit, and with a mottled and almost opaque sky, a heat of solar irradiation which I can co

t-line of the Riviera, as, for example, between Nice and La Spezia, and those of the incomparable Alpine panorama seen from Turin, are distinguishable at greater distances than they would be in the United States.] Yet in Piedmont and Lombardy irrigation is bestowed upon almost every crop, while in our Northern States it is never employed at all in farming husbandry, or indeed for any purpose except in kitchen-gardens, and possibly, in rare cases, in some other small branch of agricultural ind

wed, after serving its purpose on one field, to run into drains, canals, or rivers. But in most regions where irrigation is regularly employed, it is necessary to economize the water; after passing over or through one parcel of ground, it is conducted to another; no more is usually withdrawn from the canals at anyone point than is absorbed by the soil it irrigates, or evaporated from it, and, consequently, it is not restored to liquid circulation, except by infiltration or

for irrigation is not one of the most important branches of agricultural labor. The eminent engineer Lombardini describes the system of irrigation in Lombardy as, "every day in summer, diffusing over 550,000 hectares [1,375,000 acres] of land 45,000,000 cubic metres [nearly 600,000,000 cubi

nths of the cultivable soil of the kingdom. According to the same author, the irrigated lands in Franco did not exceed 100,000 hectares, or 247,000 acres, while those in Lombardy amounted

upplied with water by artificial canals. The Canal Cavour adds 250,000 acres to the above amount. The extent of artificially watered ground in Italy is consequently equal to the entire area of the States of Delaware and Rhode Island.-See the official report, Sulle Bonificazione, Risaie, ed Irrigazioni, 1865, p. 269.] of the Medi

the aid of irrigation. Garden vegetables, particularly, profusely watered, are so insipid as to be hardly eatable. Wherever irrigation is practised, there is an almost irresistible tendency, especially among ignorant cultivators, to carry it to excess; and in Piedmont and Lombardy, if the supply of water is abundant, it is so liberally applied as sometimes not only to injure the quality of the product, but to drown the plants and diminish the actual weight of the crop. Grass-lands are perhaps an exception to this remark, as it seems almost impossible to apply too much water to them, provided it be kept in motion and not allowed to stagnate on the surface. Protestor Liebig, in his Modern Agriculture, says: "There is not to be found in chemistry a more wonderful phenomenon, one which more confounds all human wisdom, than is presented by the soil of a garden or field. By the simplest experiment, any one may sat

oil by excessive and long-continued watering. They consider it also established as a fact of observation, that water which has flowed through or over rich ground is more valuable for irrigation than water from the same source, which has not been impregnated with fertilizing substances by passing through soils containing them; and, on the other hand, that water, rich in

to accommodate any of their original arrangements to changes in the condition of the soil, or in the modes or objects of cultivation; the flow of the water being limited by the abundance of the source or the capacity of the canals, the individual proprietor cannot be allowed to withdraw water at will, according to his own private interest or convenience, but both the time and the quantity of supply must be regulated by a general system applicable, as far as may be, to the whole area irrigated by the same canal, and every cultivator must conform his industry to a plan which may be quite at variance with his special objects or with his views of good husbandry.

7 or 28 to 60 inches, while in smaller crops, tilled by hand-labor, it is sometimes carried as high as 300 inches. [Footnote: Niel, Agriculture des Etata Sardes, p. 237. Lombardini's computation just given allows eighty-one cubic metres per day to the hectare [two hundred and sixty cubic yards to the acre], which, supposing the season of irrigation to be one hundred days, in equal to a precipitation of thirty-two inches. But in Lombardy, water in applied to some crops during a longer period than one hundred days; and in the marcite it flows over the ground even in winter. According to Boussingault (Economie Rurale, ii., p. 240), grass-grounds ought to receive, in Germany, twenty-one centimetres of water per week, and with less than half that quantity it is not advisable to incur the expense of supplying it. The ground is irrigated twenty-five or thirty times, and if the full quantity of twenty-one centimetres is applied, it receives more than two hundred inches of water, or six times the total amount of precipitation. Puvis, quoted by Boussingault, after much research comes to the conclusion that a proper quantity is twenty centimetres [eight inches] applied twenty-five or thirty times, which corresponds with the estimate just stated. Puvis adds-and, as our author thinks, with rea

ling, is cut from it in January or February. The Canal Cavour-which takes its supply chiefly from the Po at Chivasso, fourteen or fifteen miles below Turin-furnishes water of much higher fertilizing power than that derived from the Dora Baltea and the Sesia, both because it is warmer, and because

consequently six-sevenths of the supply remain for use on ground at lower levels.] The meteorological effect of irrigation on a large scale, which would seem prima facie most probable, would be an increase of precipitation in the region watered. [Footnote: On t

servation has recorded no such increase, but in a question of so purely local a character, we must ascribe very great importance to a consideration which I have noticed elsewhere, but which, has been frequently overlooked by meteorologists, namely, that vapors exhaled in one district may very probabl

relatively small proportion. In those provinces there is little or no summer rain. Is it not highly probable that the difference between Italy and Turkey in this respect is to be ascribed, in part at least, to extensive irrigation in the former country, and the want of it in the latter It is true that, in its accessible strata, the atmosphere of Lombardy is extremely dry during the period of irrigation, but it receives an immense quantity of moisture by the evaporation from the

ily accompany a local evaporation. Hence, though the summer temperature of Lombardy is high, we are warranted in affirming that it must have been still higher before the introduction of irrigation, and would again become so if that practice were discontinued. [Footnote: I do not

canals, and their entire mass of water is completely absorbed or evaporated, so that only such proportion as is transmitted by infiltration reaches the river they originally fed. Irrigation, therefore, diminishes great rivers in warm countries by cutting off their sources of supply as well as by direct abstractio

ys during the season of growth, this would be equivalent to a total precipitation of about seventeen inches and one-third. Taking the area of actually cultivated soil in Egypt at the estimate of 4,500,000 acres, and the average amount of water daily applied in both Upper and Lower Egypt at twelve hundredths of an inch in depth, we have an abstraction of about 74,000,000 cubic yards, which-the mean daily delivery of the Nile being in round numbers 320,000,000 cubic yards-is twenty-three per cent of the average quantity of water contributed to th

to the river by direct infiltration, or descends through invisible channels to moisten lower grounds, and thence in part escapes again into the bed of the river, by similar conduits, or in the form of springs and rivulets. Interesting observations have lately been made on this subject in France and important practical results arrived at. It was maintained that mountain irrigation is not ultimately injurious to that of the plains below, because lands liberally watered in the spring, when the supply is abundant, act as reservoirs, storing up by absorption water which afterwards filters down to lowe

f the narrow Sik, to discharge a part of its swollen current. The sagacity of Dr. Robinson detected the necessity of this measure, though the tunnel, the mouth of which was hidden by brushwood, was not discovered till some time after his visit. I even noticed, near the arch that crosses th

infiltration is such that water is generally found by digging to a small depth in the channel. Observing these facts in a visit to Petra in the summer, I was curious to know whether the subterranean waters escaped again to daylight, and I followed the ravine below the town for a long distance. Not very far fro

is divided into compartments rising in gradual succession to the level of the irrigating canal, in order that the water, after having flowed one field, may be drawn off to another, and thus a single current serve for several compartments, the lowest field, of course, still being higher than the ditch which at last drains both it and the adjacent soil. This arrangement gives a certain force of hydrostatic pressure to the water with which the rice is irrigated, and the infiltration from these fields is said to extend through neighboring grounds, sometimes to the distance of not less than a myriametre, or six English miles, and to be destructive to crops and even trees reached by it. Land thus affected can no longer be employed for any purpose but growing rice, and when prepared for that crop, it propagates still further the evils under which it had itself suffered, and, of course, the mischief is a growing one." [Footnote: Escourrou-Milliago, D'Italie a propos de l'Exposition de Paris, 1856, p. 92. According to an article in the Gazzetto di Torino for the 17th of January, 1869, the deaths from malarious fever i

ardy and in the Neapolitan territory in the 16th century; but besides the want of water and of level ground convenient for irrigation, rice-hu

ed by Water o

result of concentration by evaporation of river and canal waters, which contain them in very minute quantities, and with which the lands are either irrigated or occasionally overflowed. The river inundations in hot countries usually take place but once in a year, and, though the banks remain submerged for days or even weeks, the water at that period, being derived principally from rains and snows, must be less highly charged with mineral matter than at lower stages, and besides, it is always in motion. The water of irrigation, on the other hand, is applied for many months in succession, it is drawn from rivers and canals at the seasons when the proportion of salts is greatest, and it either sinks into the superficial soil, carrying with it the saline substances it holds in solution, or is evaporated from the su

RANEAN

. Rivers of considerable volume pour into some of these caves and can be traced underground to their exit. Thus the Recca has been satisfactorily identified with a stream flowing through the cave of Trebich, and with the Timavo-the Timavus of Virgil and the ancient geographers-which empties through several mouths into the Adriatic between Trieste and Aquileia. The city of Trieste is very insufficiently supplied with fresh water. It has been thought practicable to supply this want by tunnelling through the wall of the plateau, which rises abruptly in the rear of the town, until some subterranean stream is encountered, the current of which can be c

ia. It had been long observed that the sea-water flowed into several rifts and cavities in the limestone rocks of the coast, but the phenomenon has excited little attention until very recently. In 1833, three of the entrances were closed, and a regular channel, sixte

irregular depression and forms a pool, the surface of which is three or four feet below the adjacent soil, and about two and a half or three feet

de, but it distinctly appears that there is no refluent current, as of course there could not be from a base so much below the sea. Mousson found the delivery through the canal to be at the rate of 24.88

ck would easily account for a subterranean current beneath the island, and the apertures of escape might be so deep or so small as to elude observation. See Aus der Natur, vol. xix., pp. 129 et seqq. I have lately been informed by a resident of the Ionian Islands, who is familiar with the locality, that the sea flows uninterruptedly into the sub-insular cavities, at all stages of the tide.] Some of this humidity is exhaled again by the soil, some is taken up by organic growths and by inorganic compounds, some poured out upon the surface by springs and either immediat

ourse, from the falls of the Oise, the Seine receives so few important affluents, that evapo

tled that the Seine conveys to the sea much more water than is discharged into it by all its superficial branch

len by the rains and melted snows which percolate through the permeable strata in its upper course.-Annales des Ponts et Chaussees, 1851, vol. i.] or of the ocean, and some remains, though even here not in forever motio

irection by infiltration or by crevices in the superior rocky or earthy strata. According to Wittwer, Mariotte found that but one-sixth of the precipitation in the basin of the Seine was delivered into that sea by the river, "so that

to be evaporated from this river-basin annually." [Footnote: Physical Geography of the Sea. Tenth edition. London, 1861, Section 274.] In these and other like computations, the water carried down into the earth by capillary and larger conduits is wholly lost sight of, and no thought is bestowed upon the supply for springs, for common and artesian wells, and for underground rivers, like those in the great caves of Kentucky, which may gush up in fresh-water currents at the bottom of the Caribbean Sea, or rise to the light of day in the far-off peninsula of Florida. [Footnote: In the low peninsula of Florida, rivers, which must have their sources in mountains hundreds of miles distant, pour forth from the earth with a volume sufficient to permit steamboats to ascend to their basins of eruption. In January, 1857, a submarine fresh-water river burst from the bottom of the sea not far from the southern extremity of the peninsula

amelle, Quellenkunde, mit einem Vorwort von B. Cotta. 1856.] Hydrographical researches have demonstrated the existence of subterranean currents and reservoirs in many regions where superficial geology had not indicated their probable presence. Thus, a much larger proportion of the precipitation in the valley of the Tiber suddenly disappears than can be accounted for by evaporation and visible flow into the channel of the river. Castelli suspected that the excess was received by underground caverns, and slowly conducted by percolation to the bed of the Tiber. Lombardini-than whom there is no higher authority-concludes that the quantity of water gradually discharged into the river by subterranean conduits, is not less than three-quarters of the total delivery of its basin. [Footnote: See Lombardini, Importanza degli studi sulla Statistica da Fiumi, p. 27; also, same author, Sulle Inondazioni avvenute in Francia, etc., p. 29.] What is true of the hydrology of the Tiber is doubtless more or less true of that of other rivers, and the immense value of natural arrangements which diminish the danger of sudden floods by retaining a large proportion of the precipitation, and of an excessive reduction of river currents in the droughts of summer, by slowly conducting into their beds water accumulated and stored up in subterranean reservoirs in rainy seasons, is too obvious to require to be dwelt upon. The readiness with which water not obstructed by impermeable strata diffuses itself through the earth in all directions-and consequently, the importance of keeping up the supply of subterranaean reservoirs-find a familiar illustration in the effect of paving the ground about the stems of vines and trees. The surface-earth around the trunk of a tree may be made almost impervious to water, by flagstones and cement, for a dis

at 4m. 97, in the next at 4m. 23, and in that nearest the bank at 3m. 44 above the surface of the Nile. The fact that the water was highest in the most distant well appears to show that it was derived from the inundation and not, by lateral infiltration, from the river. But water is found beneath the sands at points far above and beyond the reach of the inundations, and can be accounted for onl

ves, that many wells are dug in the bed of the river in the dry season, and that the subterranean supply of water thus reached extends itself laterally, at about the sam

d the water is consequently confined to the channel and no longer diffuses itself laterally through the adjacent soil. This obstruction of course acts in both directions, according to circumstances. In one case, it prevents the escape of river-water and tends to maintain a full flow of the current; in another it intercepts the supply the river might otherwise receive by

not know the date of the first employment of these tubes in the United States, but as early as 1861, the Chevalier Calandra used wooden tubes for

hough the sea-water two or three yards from it contains even more than the average quantity of salt. It cannot be maintained that this is sea-water freshed by filtration through a few feet or inches of sand, for salt-water cannot be deprived of its salt by that process. It can only come from the highlands of Arabia

mselves rapidly into the wadies or ravines where the torrents are formed; but the beds of earth and disintegrated rock at the bottom of the valleys are of so loose and porous texture, that a great quantity of water is absorbed in saturating them before a visible current is formed on their surface. In a heavy thunder-storm, accompanied by a deluging rai

on the coast of Liguria by digging to the depth of a yard in the beach-sands. Tubular wells reach fresh water at twelve or fifteen feet below the surfa

ian W

, leaves, and even living fish, which must have been carried down through channels large enough to admit a considerable stream. [Footnote: Charles Martins, Le Sahara, in Revue des Deux Mondes, Sept. 1, 1864, p. 619; Stoppani, Corso di Geologia, i., 281; Desor, Die Sahara, Basel, 1871, pp. 50, 51.] But in general, the sheet and currents of water reached by deep boring appear to be primarily due to infiltration from highlands where the water is first collected in superficial or subterranean reservoirs. By means

s, which probably aids in forcing up petroleum and saline waters, may be, not unfrequently, an agency in causing the flow of water in common artesian borings. It is said that artesian wells lately bored in Chicago, some to the depth of 1,600 feet, raise water to the height of 100 feet above the surface. What is the source of the pres

from the bowels of the earth are too remote and uncertain to be here noticed; [Footnote: Many more or less probable conjectures have been made on this subject but thus far I am not aware that any of the apprehended results have been actually shown to have happened. In an article in the Annales des Ponts et Chaussees for July and August, 1839, p. 13

ng away of much soil; but in those cases the partial exhaustion of the supply, or the relief of hydrostatic or elastic pressure, has g

bore artesian wells down to this reservoir, to obtain water for domestic use and irrigation, and there is evidence that this art was practised in Northern Africa in the Middle Ages. But it had been lost by the modern Moors, and the universal astonishment and incredulity with which the native tribes viewed the operations of the French engineers sent into the desert for that purpose, are a sufficient proof that this mode of reaching the subterranean waters was new to them. They were, however, aware of the existence of water below the sands, and were dexterous in digging wells-square shafts lined with a framework of palm-tree stems-to the level of the sheet. The wells so constructed, though not technically artesian wells, answer the same purpose; for the water rises to the surface and flows over it as from

when water was not needed. When freed from the sand and rubbish with which they were choked, they flowed freely and threw up fish large enough for the table. The fish were not blind, as cave-fish often are, but were provided with eyes, and belonged to species common in the Nile. The sand, too, brought up with them res

s well and reached a depth of 3,150 feet, but without a satisfactory result. Another artesian well was sunk at Columbus, in Ohio, to the depth of 2,500 feet, but without obtaining the desired supply of water. Perhaps, however, the artesian well of the greatest depth ever executed until very recently, is that bored within the last six or seven years, for the use of an Insane Asylum near St. Louis. This well descends to the depth of three thousand eight hundred and forty-three feet, but the water which it furnishes is small in quantity and of a quality that cannot be used for ordinary domestic purpose

iminshes as we descend, and it seems probable that, except in case of caverns and deep fissures, the weight of the superincumbent mineral strata so compresses the underlying ones, at no

elow 1,000 feet, and at 1,200 feet from the surface the earth is

enced in mining matters. It is the decrease of water as the greater depths are reached. In the Magdala shaft at 950 ft. the water has decreased to a MINIMUM; in the Crown Cross Reef Company's shaft, at 800 ft., notw

500 feet below the surface, passing through a stratum of salt for the last 3,200 feet; but the drilling was st

le water was encountered in the Mt. Cenis tunnel, 3500 feet below the surface, and that at Scarpa, not far from Tivoli, there is an ancient well 1700

year 1860, several nomade tribes had abandoned their wandering life, established themselves around the wells, and planted more than 30,000 palm trees, besides other perennial vegetables. [Footnote: "In the anticipation of our success at Oum-Thiour, everything had been prepared to take advantage of this new source of wealth without a moment's delay. A division of the tribe of the Selmia, and their sheikh, Aissa ben Sha, laid the foundation of a village as soon as the water flowed, and planted twelve hundred date-palms, renouncing their w

ute, and irrigating more than 125,000 date-palms. Reclus, La Terre, i., p. 110.] The water is found at a small depth, generally from 100 to 200 feet, and though cont

d halting-places for the desert traveller; but if the supply of water shall prove adequate for the indefinite extension of the system,

rock is so generally covered with moss or earth, and earth with vegetation, that untravelled Englishmen and Americans are not very familiar with naked rock as a conspicuous element of landscape. Hence, in their conception of a bare cliff or precipice, they hardly ascribe definite color to it, but depict it to their imagination as wearing a neutral tint not assimilable to any of the hues with which nature tinges her atmospheric or paints her organic creations. There are certainly extensive desert ranges, chiefly limestone formations, where the surface is either white, or has weathered down to a dull uniformity o

li of a transparent, ethereal blue, seemingly balled up out of the clear cerulean substance of the firmament, and detached from the heavenly vault, not by color or consistence, but solely by the light and shade of their salient and retreating outlines.] The most sanguine believer in indefinite human progress hardly expects that man's cunning will accomplish the universal fulfilment of the prophecy, "the desert shall blossom as the rose," in its literal sense; but sober geographers have thought the future conversion of the sand plains of Nort

domestic purposes, for hot-house cultivation, and even for the local amelioration of climate. The success with which Count Lardarel has employed natural hot springs for the evaporation of water charged with boracic acid, and other fortun

cial S

at they do proceed and are engendered of nought but the rains. And it is this, look you, which hath moved me to enterprise the gathering together of rain-water after the manner of nature, and the most closely according to her fashion that I am able; and I am well assured that by following the formulary of the Supreme Contriver of fountains, I can make springs, the water whereof shall be as good and pure and clear as of such which be natural." [Footnote: Oeuvres de Palissy, Des Eaux et Fontaines, p. 157.] Palissy discusses the subject of the origin of springs at length and with much ability, dwelling specially on infiltration, and, among other things, thus explains the frequency of springs in mountainous regions: "Having well considered the which, thou mayest pl

pring which will flow without intermission, and supply the wants of a whole hamlet or a large chateau." [Footnote: Babinet, Etudes et Lectures sur les Sciences d'Observation, ii., p. 225. Our author precedes his account of his method with a complaint which most men who indulge in thinking have occasion to repeat many times in the course of their lives. "I will explain to my readers the construction of artificial fountains according to the plan of the famous Bernard de Palissy, who, a hundred and fifty [three hundred] years ago, came and took away from me, a humble academician of the nineteenth century, this discovery which I had taken a great deal of pains to make. It is enough to discourage all invention when one finds plagiarists in the past as well as in the future!" (P. 224.)] Babinet states that the whole amount of precipitation on a reservoir of the proposed area, in the climate of Paris, would be about 13,000 cubic yards, not above one half of which,

ing Prec

ence it is to be drawn for household and mechanical purposes, for irrigation, and, in short, for all the uses to which the water of natural springs and brooks is applicable. His plan consists in draining both surface and subsoil, by means of conduits differing in construction according to local circumstances, but in the main not unlike those employed in improved

nts of nature, or, in other words, of restoring the fluid circulation of the globe; for when the earth was covered with the forest, perennial springs gushed from the foot of every hill, brooks flowed down the bed of every valley. The partial recovery of the fountains and rivulets which once abundantly watered the face of the agricultural world seems practicable by such means, even without any general replantin

ons and

uestion can be arrested or perhaps even sensibly mitigated by their influence; and besides, floods will always occur in years of excessive precipitation, whether the surface of the soil be generally cleared or generally wooded. [Footnote: All the arrangements of rural husbandry, and we might say of civilised occupancy of the earth, are such as necessarily to increase the danger and the range of floods by promoting the rapid discharge of the waters of precipitation. Superficial, if not subterranean, drainage is a necessary condition of all agriculture. There is no field which has not some artificial disposition for this purpose, and even the furrows of ploughed land, if the surface is inclined, and especially when it if frozen, serve rather to carry off than to retain water. As Bacquerel has observed, common road and railway ditches are among the most efficient conduits for the discharge of surface-water which man has yet constructed, and of course they are powerful agents in causing river inundations. All these channels are, indeed, necessary for th

s of 1856

te.] The flood was not less destructive in the valley of the Rhone, and in fact an invasion by a hostile army could hardly have been more disastrous to the inhabitants of the plains than was this terrible deluge. There had been a flood of this latter river in the year 1840, which, for height and quantity of water, was almost as remarkable as that of 1856, but it took place in the month of November, when the crops had

millions of francs. "What if," says Dumont, "instead of happening in October, that is, between harvest and seedtime, they had occ

arvests valuable enough to be a matter of national interest, endangered the personal security of the population of important political centres, interrupted communication for days and even weeks together on great lines of traffic and travel-thus severing, as it were, all South-western France from the rest of the empire-and finally threatened to produce great and permanent geographical changes. The well-being of the whole commonwealth was seen to be involved in preventing the recurrence and in limiting the range of such devastations. The Government encouraged scientific investigation of the phenomena and their laws. Their causes, their history, their immediate and remote consequences, and the possible safeguards to be employed against them, have been carefully studied by the most eminent physicists, as well as by the ablest theoretical and practical engineers

of Re

h waters into the principal stream by its tributaries, will diminish in the same proportion the dangers and the evils of inundation by great rivers. The retention of the surface-waters upon or in the soil can hardly be accomplished except by the methods already mentioned, replanting of forests, and furrowing or terracing. The current of mountain streams can be checked by various methods, among which the mos

supply of water for agricultural and mechanical purposes, and, also, their value as ponds for breeding and rearing fish, and, perhaps, for cultivating aquatic vege

e communication; the probability that they would soon be filled up with sediment, and the obvious fact that when full of earth, or even water, they would no longer serve their principal purpose; the great danger to which they would expose the coun

ed houses, and produced damage to the amount of more than a million dollars.-Aynard, Irrigations du Midi d l'Europe, pp. 257-259.] the evil consequences they would occasion by prolonging the flow of inundations in proportion as they diminished their height; the injurious effects

the capacity of the necessary reservoirs can be calculated. Let us take the case of the Ardeche. In the inundation of 1857, that river poured into the Rhone 1,305,000,000 cubic yards of water in three days. If we suppose that half this quantity might have been suffered to flow down its channel without inconvenience, we shall have about 650,000,000 cubic yards to provide for by reservoirs. The Ardeche and its principal affluent, the Chassezae, have, together, about twelve

he latter stream. Hence reservoirs of double the capacity I have supposed would have been necessary upon the tributaries of that river, to prevent the injurious effects of the inundation. It is evident that the construction of reservoirs of such magnitude for such a purpose is financially, if not physically, impracticable, and when

the whole basin suitable for that purpose, and the reservoirs admissible at these would have only a joint capacity of about 70,000,000 cubic yards, or less than one-ninth part of what I suppose to be required. The case of the Ardeche is no doubt an extreme one, both in the topographical

poration and infiltration, gradually discharged into the beds of the rivers. In the inundation of 1829 the water discharged into Lake Como from the 15th to the 20th of September amounted to 2,600 cubic yards the second, while the outflow from the lake during the same period was only at the rate of about 1,050 cubic yards to the second. In those five days, then, the lake accumulated 670,000,000 cubic yards of superfluous water, and of course diminished by so much the quantity to be disposed of by the Po. [Footnote: Baird Smith, Italian Irrigation, i., p. 176.] In the flood of October, 1868, the surface of Lago Maggiore was raised twenty-five feet above low-water mark in the course of a few

ture. In a flood of the Rhone, in 1863, this lake received from the overflow of that river, which does not pass through it, 72,000,000 cubic y

of the Mississippi, a little below the month of the Ohio, was 52,000 cubic yards to the second, but at Baton Rouge, though of course increased by the waters of the Arkansas, the Yazoo, and other smaller tributaries, the discharge was reduced to 46,760 cubic yards. We rarely err when we cautiously imitate the processes of nature, and there are doubtless many cases where artificial basins of reception and lateral expansions of river-beds might be employed with advantage. Many upland streams present points where none of the objections usually urged against artificial reservoirs, except those of expense and of danger from the breaking of dams, could have any application. Reservoirs may be so constructed as to retain the entire precipitation of the heaviest thaws and rains, leaving on

cross the channels of the mountain sources of important streams, and the Arabs executed immense works of similar description, both in the great Arabian peninsula and in all the provinces of Spain which had the good fortune to fall under their sway. The Spaniards of the fifteenth and sixteenth centuries, who, in many points of true civilization and culture, were far

ion of

omenon mentioned in the text, and there is no valid objection to the employment of the anatomical term anastomosis for this purpose.] The most remarkable of these is the junction between the Amazon and the Orinoco by the natural canal of the Cassiquiare and the Rio Negro. In India, the Cambodja and the Menam are connected by the Anam; the Saluen and the Irawaddi by the Panlaun. There are similar examples, though on a much smaller scale, in Europe. The Tornea, and the Calix rivers in Lapland communicate by the Tarando, and in Westphalia, the Else, an arm of the Haase, falls into the Weser. [Footnote: The division of the currents of rivers, as a means of preventing the overflow of their banks, is by no means a remedy capable of general application, even when local conditions are favorable to the construction of an emissary. The velocity of a stream, and consequently its delivery in a given time, are frequently diminished

200 feet wide and 100 high, through a rock, and sent its whole current through it, deserting its former bed, which gradually filled up, though its course remained traceable. In the great inundation of 1827, the tunnel proved insuff

s, and possibly, also, to diminish the dangers resulting from excessive inundations of the Nile, by serving as waste-weirs to discharge a part of its overflowing waters. [Footnote: The starting-points of these anals were far up the Nile, and of course at a comparatively high level, and it is probable that they received water only during the inundation. Linant Bey calculates the capacity of Lake Moeris at 3,686,667 cubic yards and the water received by it at high Nile at 465 cubic yards the second.

few miles below the city of that name emptied into the river Aar. It frequently flooded the flats along the lower part of its course, and it was determined to divert it into the Lake of Thun. For this purpose, two parallel tunnels were cut through the intervening rock, and the river turned into them. The violence of the current burst up the roof of the tunnels, and, in a very short time, wore the new channel down not less than one hundred feet, and even deepened the former bed at least fifty feet, for a distance of two or three miles above the tunne

ier

y and the remaining 500,000,000 cubic feet of water were discharged in half an hour. The recurrence of these floods has since been prevented by directing streams of water, warmed by the sun, upon the ice in the bed of the valley, and thus thawing it before it accumulates in sufficient mass to form a new barrier and threaten serious danger. [Footnote: In 1845 a similar lake was formed by the extension of the Vernagt glacier. When the ice barrier gave way, 3,000,000 cubic yards of water were discharged in an hour.-Sonklar, Die Oetzthaler Gebirgsgruppe, section 167.] In the cases of diversion of streams above mentioned, important geographical changes have been directly produced by those operations. By the rarer process of draining glacier lakes, natural eruptions of water, which would have occasioned not less important changes in the face of the earth, have been prevented by human agency. River Embankments. The most obvious and doubtless earliest method of preventing the escape of river-waters from their natural channels, and the overflow of fields and towns by their spread, is

forests. When a river is embanked at a given point, and, consequently, the water of its floods, which would otherwise spread over a wide surface, is confined within narrow limits, the velocity of the current and its transporting power are augmented, and its burden of sand and gravel is deposited at some lower point, where the rapidity of its flow is checked by a dam or other artificial obstruction, by a diminution in the inclination of the bed, by a wider channel, or finally by a lacustrine or marine basin which receives its waters. Wherever it lets fall solid material, its channel is raised in consequence, and the declivity of the whole bed between the head of the embankment and the slack of the stream is reduced. Hence the current, at first acce

owing general statement of th

eight of its floods, but, at the same time, a depression of its bed, by reas

ence be carried further, and at the sam

ume, and therefore the height of the floods in the lower course, i

or, in other words, which has not acquired its normal inclination, the course of the river has no

e swelling of the current, in consequence of its lateral confinement, occasions eddies, and of course deposits, and because the prolongation of the cours

casional effect of heavy rains or melting snow.-Trattato delle Macchie e Foreste di Tuscana, Firenze, 1857, p. 29.] The bank must now be raised in proportion, and these processes would be repeated and repeated indefinitely, had not nature provided a remedy in floods, which sweep out recent deposits, burst the bonds of the river and overwhelm the adjacent country with final desolation, or divert the current into a n

of the lower course of

25,

compels them continually to seek new outlets, and it is only by great effort that art can keep their points of discharge pproximately constant. The common delta of the Ganges and the Brahmapootra is i

shackles by which he essays to confine her. If, by assiduous repair of his dikes, he, for a considerable time, restrains the floods of a river within new bounds, nature, by a series of ingenious compensations, brings the fluctuating bed of the stream to a substantially con

gravitation and the momentum of the current can overcome the frictional resistance of the bed and banks, the water will, in spite of all obstacles, diffuse itself laterally and for a time raise the level of the champaign land upon its borders, and at last convert it into morasses. It is for this reason that Lombardini advises that a considerable space along the lower course of rivers be left undiked, and the water allowed to spread itself over its banks and gradually raise them by its deposits. [Footnote: This method has been adopted on th

currents, modified as they are by ever-fluctuating conditions. Thus the Po is said to have long inclined to move its channel southwards, at certain points, in consequence of the mechanical force of its northern affluents. A diversion of these tributaries from their present beds, so that they should enter the main stream at other points and in different directions, might modify the whole course of that great river. But the mechanical force of the tributary is not the only element of its influence on the course of the principal stream. The deposits it lodges in the bed of the latter, acting as simple obstructions or causes of diversion, are not less important agents of change.] but in proportion as their outlets are raised by the solid material transported by their currents, their velocity is diminished, they deposit gravel and sand at constantly higher and higher points, and so at last elevate, in the middle and lower part of their course, the beds they had previously scooped out. [Footnote: The distance to which a new obstruction to the flow of a river, whether by a dam or by a deposit in its channel, will retard its current, or, in popular phrase, "set back the water," is a problem of more difficult practical solution than almost any other in hydraulics. The elements-such as straightness or crookedness of channel, character of bottom and banks, volume and previous velocity of current, mass of water far above the obstruction, extraordinary dr

es where, if left to herself, she might have accumulated inexhaustible stores of the richest soil, and spread them out in plains above the reach of ordinary floods. [Footnote: The sediment of the Po has filled up some lagoons and swamps in its delta, and converted them into comparatively dry land; but, on the other hand, the retardation of the current from the l

to confine the water and strong enough to resist its pressure, they secure the lands behind them from all the evils of inundation except those resulting from filtration; but such ramparts are enormously costly in original construction and in maintenance, and, as has been already shown, the filling up of the bed of the river in its lower course, by sand and gravel, often involves the necessity of incurring new expenditures in increasing the height of the banks. [Footnote: It appears from the inv

me effect has not been more sensibly perceptible in the Po is, that the confinement of the current by continuous embankements gives it a high-water velocity sufficient to sweep out deposits let fall at lower stages and slower movements of the water. Torrential streams tend to excavate or to raise their beds according to the inclination, and to the

hough apparently too unconditionally

irie rivers of the western United States have deep channels, because the mineral matter they carry down is not heavy enough to resist the impulse of even a moderate current, and

there is every reason to believe that the depression of the Adriatic coast, whether, as is conceivable, occasioned by the mere weight of the fluviatile deposits or by more general geological causes, has increased the slope of the bed of the river between the points in question and the sea. In this instance, then, the relative permanency of the river level at certain points may be, not the ordinary case of a natural equilibrium, but the negative effect of an increased velocity of current which prevents deposits where they would otherwise have happened.] They are attended, too, with some collateral disadvantages. They deprive the earth of the fertilizing deposits of the waters, which are powerful natural restoratives of soils exhausted by cultivation; they accelerate the rapidity and transporting power of the current at high water by confining it to a narrower channel, and it consequently conveys to the sea the earthy matter it holds in suspension, and chokes up harbors wi

d devastation through the bursting of the dikes, by crossing the river when the danger became imminent and opening a cut in the opposite bank, thus saving their own property by flooding their neighbors'. He adds, that at high water the navigation of the rive

from their homes. In the flood of October in the same year, in consequence of a breach of the dike at Revere, 250,000 acres of cultivated soil were overflowed, and 60,000 persons were made homeless. The dikes were seriously injured at more than forty points. See page 279, ante. In the flood of 1856, the Loire made seventy-three breaches in its dikes, and thus, instead of a comparatively gradual rise and ge

e been chiefly distributed over the plains of Lombardy. Their banks, it is supposed, would have risen as fast as their beds, the coast-line would not have been extended so far into the Adriatic, and, the current of the streams being consequently shorter, the inclination of their channel and the rapidity of their flow would not have been so greatly diminished. Had man, too,

ind that the condemnation of the plan pursued by the ancient inhabitants of Lombardy is a too hasty generalization, and that the case of the Nile is an exception, not an example of the normal regime and condition of a great river. [Footnote: Embankments have been employed on the lower course of the Po for at least two thousand

, which serves both as a summary of the recent progress of that science and as an index to the literature of the subject. The professional student, therefore, as well as the geographer, will have very frequent occasion to consult Italian authorities, and in the very v

ts, and the interests which might be sacrificed by a change of system are too vast to be hazarded by what, in the present state of our knowledge, can be only considered as a doubtful experiment. [Footnote: Dupenchel advised a resort to the "heroic remedy" of sacrificing, or converting into cellars, the lo

xtends, with only occasional interruptions from high bluffs and the mouths of rivers, for a distance of more than eleven hundred miles. The left bank is, in general, higher than the right, and upon that side a continuous embankment is not needed; but the total length of the dikes of the Mississippi, including those of th

t violence whenever they are likely to be overflowed. Where dikes have not been erected, or where they have been reduced in height, it is proposed to construct, at convenient intervals, transverse embankments of moderate height running from the banks of the river across the plains to the hills which bound them. These measures, it is argued, will diminish the violence of inundations by permi

ity of the current would be checked, and the quantity of transported pebbles and gravel-which, by increasing the mechanical force of the water, greatly aggravate the damage by floods-much diminished. When the stream has reached that part of its course where it is bordered by soil capable of cultivation, and worth the expense of protection, he proposes to place along one or both banks, according to circumstances, a line of cubical blocks of stone or pillars of masonry three or four feet high and wide, and at the distance of about eleven yards from each other. The space between the two lines, or between a line and the opposite high bank, would, of course, be determined by observation of the width of the swift-water current at high floods. As an auxiliary measure, small ditches and banks, or low walls of pebbles, should be constructed from the line of blocks across the grounds to be protected, nearly at right angles to the current, but slightly inclining downwards, and at convenient distances from each other. Rozet thinks the proper interval would be 300 yards, and it is evident that, if he is right in his main principle, hedges, rows of trees, or even common fences, would in many cases answer as good a purpose as banks

s transversely to the current on grounds subject to overflow.-Esame

of Obstr

f spurs with parabolic curves has been attended with giant advantage in France.-Annales du Genie Civil, Mai, 1863.] and the cutting off of bends, though occasionally effected by nature herself, and sometimes advantageous in torrential streams whose banks are secured by solid walls of stone or other artificial constructions, seldom establishes a permanent channel, and besides, the increased rapidity of the flow through the new cut often injuriously affects the regime of the river for a considerable distance below. [Footnote: This practice has sometimes been resorted to on the Mississippi with advantage to navigation, but it is quite another question whether that advantage has not been too dearly purchased by the injury to the banks at lower points. If w

led salti, or leaps, and sometimes abridge the distance between their termini by several miles. In 1777, the salto of Cottaro shortened a distance of 7,000 metres by 5,000, or

tion of

uid circulation. For rivers, in general, begin in the mountains, traverse the plains, and end in the sea; they are torrents at their sources, swelling streams in their middle course, placid currents, flowing molli flumine, at their termination. Hence in the different parts of their course the different methods of controlling and utilizing them may successively find application, and ther

uth-eastern France to arrest the formation and lessen the force of torrents, would prove equally useful as a preventive remedy against inundations. They would both retard the delivery of

of the

ts floods burst its ramparts, sometimes on one side, sometimes on the other, and deluged the plains, which lay far below the level of its current. . . . In one of its formidable inundations the Nile overwhelmed and drowned a large part of the population. The Egyptians then perceived that

ons referred to by the authors in question were simply extraordinary floods of the same character as those which have been frequent at later periods of Egyptian history, and I find nothing in support of the proposition that continuous embankments along the banks of the Nile ever existed until such were constructed by Mehemet Ali. [Footnote: The gradual elevation of the bed of the Nile from sedimentary deposit, from the prolongation of the Delta and consequent reduction of the inclination of the river-bed, or, as has been supposed by some, though without probability, fr

prevent them from flowing over the adjacent plains. The object of the Egyptian dikes and canals is the reverse, namely, to diffuse the swelling waters and their sediment over as wide a surface as possible, to store them up until the soil the

h a perennial supply of water to the thirsty soil. But these artificial arrangements alone did not suffice. Canals were dug to receive the water at lower stages of the river and conduct it far into the interior, and as all this was still not enough, hundreds of thousands of

triven to bind his swelling floods, the fertile fields of Egypt would have been converted into dank morasses, and then, perhaps, in some distant future, when the expulsion of man should have allowed the gradual restoration of the primitive equilibrium, would be again transformed into luxuriant garden and plough land. Fortunately, the sapientia AEgyptiorum, the wisdom of the Egyptians, taught them better things. They invited and welcomed, not repulsed, the slimy embraces of Nilus, and his favors have been, from the hoariest antiquity, the greatest material blessing that nature ever bestowed upon a people. [Footnote: Deep borings have not detected any essential difference in the quantity or quality of the deposits of the Nile for fo

s of th

t tributary, is found to be 1,720 cubic metres, or 60,745 cubic feet, per second. Its smallest delivery is 186 cubic metres, or 6,569 cubic feet, its greatest 5,156 cubic metres, or 152,094 cubic feet. The average delive

g down from the mountains, its deposits in the Adriatic are at least sixty or seventy per cent. greater than those transported to the Mediterranean by the Rhone, which derives most of its supply from mountain and torrential tributaries. Those tributaries lodge much sediment in the Lake

and more than six and a half times as much as the Nile. The discharge of the Mississippi is estimated at one-fourth of the precipitation in its basin-certainly a very

inches. Hence the down-fall in the former is one-fourth less than in the latter. Besides this, the Mississippi loses little or nothing by the diversion of its waters for irrigation. Consequently the measured discharge of the Mis

ow the point where it receives its last affluent. This quantity is now increasing in so rapid a proportion, that Elisee Reclus foresees the day when the entire low-water current will be absorbed by new arrangements to meet the needs of extended and improved agriculture. On the other hand, while the affluents of the Po send off a great quantity of water into canals of irrigation, the main trunk loses little or n

any hundred miles in almost rainless latitudes with enormous evaporating power, while the precipitation is large throughout the Mississippi system, except in the basins of some of its western affluents.] it drains a basin fifty, possibly even a hundred, times as extensive, its banks have been occupied by man probably twice as long. But its geographical character has not been much changed in the whole period of recorded history, and, th

t we have no trustworthy data for calculating the annual or secular elevation of the soil of Egypt by the sediment of the Nile. The deposit, they say, is variable from irregularity of current,

greatest proportion occurs about the end of July, and of course, while the river is still rising. Experiments at Khartum at that season showed solid matter in the proportion of one to a thousand by weight. The quantity is relatively greater at Cairo, a fact which shows that the river receives more earth from the erosion of its banks th

weight, and computes the entire annual quantity at

214 feet.-Humphreys and Abbott, Report, p. 140.] within the last 5,000 years, or twice and a half the period during which the history of the Po is known to us. [Footnote: We are quite safe in supposing that the valley of the Nile has been occupied

delta at the mouth of that river. Humphreys and Abbot conclude that the delta of the Mississippi began its encroachments on the Gulf of Mexico not more than 4,400 years ago, before which period they suppose the Mississippi to have been "a compara

the Ptolemies; for-though, in consequence of the elevation of the river-bed, the inundations now have a wider NATURAL

rrigation must have been carried on during the whole year. The precise amount of sediment which would have been thus distributed over the soil is matter of conjecture, but though large, it would have been much less than the inundations have deposited, and continuous longitudinal embankments would have compelled the Nile to transport to the Mediterranean an immense quantity over and above what it has ac

o some authorities, a few hectares are added every year at each Nile mouth. Others, among whom I may mention F

elta advances about 40 inches p

on of Riv

within the historical period, and nothing but great volume of water, or exceptional rapidity of flow, now enables a few large streams like the Amazon, the La Plata, the Ganges, and, in a loss degree, the Mississippi, to carry their own deposits far enough out into deep water to prevent the formation of serious obstructions to navigation. But the degradation of their banks, and the transportation

o form plains in their basins. In their upper course, where the current is swiftest, they are most heavily charged with coarse rolled or suspended matter, and this, in floods, they deposit on their shores in the mountain valleys where they rise; in their middle course, a lighter earth is spread over the bottom of their widening basins, and forms plains of moderate extent; the fine silt which floats farther is deposited over a still broader area, or, if carried out to sea, is in great part quickly swept far off by marine cu

hem in sheltered bays and nooks of the coast-for the flowing is stronger than the ebbing tide, the affluent than the refluent wave. This cause of injury to harbors it is not in man's power to resist by any means at present available; but,

The earth borne out of the mouths of the Nile is in part carried over the waves which throw up sea-sand on the beach, and deposited in deep water, in part drifted by the current, which sweeps east and north along the coasts of Egypt and Syria, and lodged in every nook along the shore-and among others, to the great detriment of the Suez Canal, in the artificial harbor at its northern terminus-and in part borne along until it finds a final resting-place in the north-eastern angle of the Mediterranean. [Footnote: "The stream carries this mud, etc., a

was any notice of such a shoal to be found or any chart on board. The fact is, as we learned afterwards, that a stratum of mud, stretching from the mouths of the Nile for many miles out into the open sea, forms a movable deposit along the Egyptian coast. If this deposit is driven forwards by powerful currents, it sometimes rises to the surface, and disturbs the mariner by the sudden appea

n question, and it is frequently observed in the

ecting forests, contributes to raise the plains of Egypt, to shoal the maritime channels which lead to the city built by Alexander near the mouth of th

f the Tusc

e sedimentary matter with which they are charged. The western coast of Tuscany has advanced some miles seawards within a very few centuries. The bed of the sea, for a long distance, has been raised, and of course the relative elevation of the land above it lessened; harbors have been filled up and destroyed; long lines of coast dunes have been formed, and the diminished inclination of the beds of the rivers near their outlets has caused their waters to overflow their banks and convert them into pestilential marshes. The territorial extent of Western Italy

ed with water, it flows like a river. Such a soil as this would not be completely protected by woods, and, indeed, it would now be difficult to confine it long enough to allow it to cover itself with forest vegetation. Nevertheless, it certainly was once chiefly wooded, and th

said that "no grass grew where his horse's hoofs had trod." The instances are few, where a second civilization has flourished upon the ruins of an ancient culture, and lands once rendered uninhabitable by human acts or neglect have generally been forever abandoned as hopelessly irreclaimable. It is, as I have before remarked

at the will of the engineers, and thereby to raise grounds rendered insalubrious and unfit for agricultural use by stagnating water; the improvements in the Maremma have embraced both this method of elevating the level of the soil, and the prevention of the mixture of salt-water with fresh in the coast marshes and shallow bays, which is regarded as a very active cause of the development of malarious influences. [Footnote: The fact that the mixing of salt and fresh water in coast marshes and lagoons is deleterious to the sanitary condition of the vicinity, has been generally admitted, though the precise reason why a mixture of both should be more injurious than either alone, is not altogether clear. It has been suggested that the admission of salt-water to the lagoons and rivers

s in the Tu

Maremma, the Pecora, by clearings recently executed along its upper course. "The condition of this marsh and of its affluents are now, November, 1859, much changed, and it is advisable to prosecute its improvement by deposits. In consequence of the extensive felling of the woods upon the plains, hills, and mountains of the territory of Massa and Scarlino, within the last ten years, the Pecora and other affluents of the marsh receive, during the rains, water abundantly charged with slime, so that the dep

75.] and above all, the coast, which is a recent deposit of the waters, is little elevated above the sea, and admits into its lagoons and the mouths of its rivers floods of salt-w

terranean, see Bottger,

rs to the fact in several familiar passages, and the petty tyrants upon its borders often sent criminals to places of confinement in its territory, as a slow but certain mode of execution. Ignorance of the causes of the insalubrity, and often the interference of private rights, [Footnote: In Catholic countries, the discipline of the church requires a meagre diet at certain seasons, and as fish is not flesh, there is a great demand for that article of food at those periods. For the convenience of monasteries and their patrons, and as a source of pecuniary emolument to ecclesiastical establishments and sometimes to lay proprietors, great numbers of artificial fish-ponds were created during the Middle Ages. They were generally shallow pools formed by damming up the outlet of marshes, and they were among the most fruitful sources of endemic disease, and of the peculiar malignity of the epidemics which so often ravaged Europe in those centuries. The

[Footnote: Macchiavelli advised the Government of Tuscany "to provide that men should restore the wholesomeness of the soil by cultivation, and purify the air by fires."-Salvagnoli, Memorie, p. 111.] In accordance with these views, settlers were invited from various parts of Italy, from Greece, and, after the accession of the Lorraine princes, from that country also, and colonized in the Maremma. To strangers coming from soils and skies so

res are forest. One of the mountain peaks, that of Mount Amiata, rises to the height of 6,280 feet. The mountains of the Maremma are healthy, the lower hills much less so, as the malaria is felt at some points at the height of 1,000 feet, and the plains, with the exception of a few localities favorably situated on the seacoast, are

mittent, malignant, gastric, or catarrhal fever. Very few agricultural laborers escaped fever, though the disease did not always manifest itself until they had returned to the mountains. In the province of Gross

the Tuscan Maremma, because of their great relative importance, and because their history is well known; but like operations have been executed in the territory of Pisa and upon the coast of the duchy of Lucca. In the latter case they were confined principally to prevention of the intermixing of fresh water with that of the sea. In 1741 sluices or lock-gates were constructed for this purpose, and the following year the fevers, which had been destructive to the coast population for a long time previous, disappeared altogether. In 1768 and 1769, the works having fallen to decay, the fevers returned in a very malignant form, but the rebuilding of the gates again restored the healthfulness of the sh

s in the Va

h that of the Arno. In the Middle Ages, and down to the eighteenth century, the Val di Chiana was often overflowed and devastated by the torrents which poured down from the highlands, transporting great quantities of slime with their currents, stagnating upon its surface, and gradually converting it into a marshy and unhealthy district, which was at last very greatly reduced in population and productiveness. It had, in fact, become so desolate that even the swallow had deserted it. [Footnote: This curious fact is thus stated in the preface to Fossombroni (Memorie s

to which almost all other birds are subject. It is possible that this respect for the swallow is founded upon ancient observation of the fact just stated on the authority of Fossombroni. Ignorance mistakes the effect for the cause, and the absence of this bird may have been supposed to be the occasion, not the consequence, of the unhealthiness of particular localities. This opinion once adopted, the swallow wo

d, and the position of the summit seems to have shifted according to the varying amount and place of deposit of the sediment brought down by the lateral streams which emptied into it. The length of its principal channel of drainage, and even the direction of its flow at any

w from its channel to the latter stream, through the Val di Chiana, provided the bed of the valley had remained at the level which excavations prove it to have had a few centuries ago, before it was raised by the deposits I have mentioned. These facts, together with the testimony of ancient geographers which scarcely admits of any other explanation, are thought to prove that all the waters of the Upper Arno were originally discharged through the Val di Chiana into the Tiber, and that a part of them still continued to

ent to the Paglia. Along the level portion of the valley was a boatable channel, and lakes, sometimes a mile or even two miles in breadth, had formed at various points farther south. At this period the drainage of the summit level might easily have been determined in either direction, and the

en preserved, proposed, as the only possible method of improvement, the piercing of a tunnel through the hills bounding the valley on the west to convey its waters to the Ombrone, but the expense and other objections prevented the adoption of this scheme. [Footnote: Morozzi, Dello stato dell' Arno, ii., pp. 39, 40.] The fears of the Roman Government for the safety of the basin of the Tiber had induced it to construct embankments across the portion of the valley lying within its territory, and these obstructions, though not specifical

long time abandoned, and the waters were allowed to spread and stagnate until carried off by partial drainage, infiltration, and evaporation. Torricelli had contended that the slope of a large part of the valley was too small to allow it to be drained by ordinary methods, and that no practicable depth and width of canal would suffice for that purpose. It could be laid dry, he thought, only by converting its surface into an inclined plane, and he suggested that this might be accomplished by controlling the flow of the numerous torrents which pour into it, so as to force them to deposit their sediment at the pleasure of the engineer, and, consequently, to elevate the level of the area over which it should be spread. [Footno

nd the success has fully justified the expectations of the most sanguine advocates of the scheme. The plan of improvement embraced two branches: the one, the removal of obstructions in the bed of the Arno, and, consequently, the further depression of the channel of that river, in certain places, with the view of increasing the rapidity of its current; the other, the gradual filling up of the ponds and swamps, and raising of the lower grounds of the Val di Chiana, by directing to convenient points the flow of the streams which pour down into it, and there confining their waters by temporary dams until the sediment was deposited where it was needed. The economical result of these operations has been, that in 1835 an area of more than four hundred and fifty square miles of pond, marsh, and damp, sickly low grounds had been converted into fertile, healthy, and well-drained soil, and, consequently, that so much territory has been added to the agricultural domain of Tuscany. But in our present view of the subject, the geographical revolution which has been accomplished is still more interesting. The climatic influence of the elevation and draining of the soil must have been considerable, though I do not know that an increase or a diminution of the mean temperature or precipitation in the valley has been established by meteorological observation. There is, however,

ent below depends upon local circumstances, and especially upon the angle of incidence. If the two nearly coincide in direction, so as to include a small angle, the join current will have a greater velocity than the slower confluent, perhaps even than either of

to the new bed. "Theory and the authority of all hydrographical writers combine to show that the channels of rivers undergo an elevation of bed below a canal of diversion."-Letter of Fossombroni, in Salvagnoli, Raccolta di Documenti,

Fossombroni's statements and opinions have been controverted, and in comparatively unimportant particulars they have been shown to be

Between the years 1700 and 1799 the chroniclers record seventeen floods of the Arno, and twenty between 1800 and 1870, but none of these were of a properly destructive character except those in 1844, 1864, and 1870, and the ravages of this latter were chiefly confined to Pisa, and were occasioned by the bur

of Ope

ion. They have, as we have seen, produced important geographical changes in the surface of the earth and in the flow of considerable rivers, and their effects have been not less con

r rivers, the sedimentary matter would not be distributed equally along the shore, and much of it would be carried out into deep water, or perhaps transported by the currents to distant coasts. The immediate effects of the deposit in the sea, therefore, would not be so palpable as they appear in this numerical form, but they would be equally certain, and would infallibly manifest themselves, first, perhaps,

waters of the wet season until they could be gradually drawn off into the Paglia. They consequently deposited most of their sediment in the Val di Chiana and carried down comparatively little earth to the Tiber. The lateral streams contributing the largest quantities of sedimentary matter to t

the declivity of the valley, would have been carried down to the Tiber and thence into the sea. The deposit thus created would, of course, have contributed to increase the advance of the shore at the mouth of that river, which has long been going on at the rate of three metres and nine-tenths (twelve feet and nine inches) per annum. [Footnote: See the careful estimates of Rozet, Moyens de forcer les To

been adopted with advantage. It has been argued, as in the case of the Po, that a system of transverse inland dikes and canals, upon the principle of those which have been so successfully employed in the Val di Chiana and in Egypt, might have elevated the low grounds above the ocean tides, by spreading over them the sediment brought down by the Rhine, the Maes, and the Scheld. If this process had been introduced in the Middle Ages, and constantly pursued to our times, the superficial and coast geogr

allow coast of the Netherlands, has been brought down by the rivers which empty upon those shores, and could have been secured by all

from other more remote sources. Much of the river slime has, no doubt, been transported by marine currents quite beyond the reach of returning streams, and it is unce

ootnote: Erdhunde, vol. i, p. 384. The Mississippi-a river "undercharged with sediment"-with a mean discharge of about ten times that of the Rhine, deposits a cubic geographical mile in thirty-three years.] The proportion of this suspended matter which, with our present means, could be arrested and precipitated upon the ground, is almost infinitesimal, for only the surface-water, which carries much less sediment than that at the bottom of the channel, would flow over the banks, and as the movement of this water, if not checked altogether, would be greatly retarded by the prop

the whole volume of their suspended material and of depositing it at the same time on their banks, the system of cross-dikes and COLMATAGE must be limited to torrential streams transporting large proportions of sediment, and to th

Claim Your Bonus at the APP

Open