The Story of Electricity
ty. A merely stationary or "static" charge of electricity on a body, say a brass ball, can also disturb the ether; and if the strength of the charge is varied, ether os
oni, a young Italian hitherto unknown to fame. In carrying out his invention, Marconi made use of facts well known to theoretical electricians, one of whom, Dr, Oliver J. Lodge, had even sent signals with them in 1894; but it often happens in science as in literature that the recognised professor
m the battery, in agreement with the longer and shorter signals of the message. At the same time longer or shorter series of sparks corresponding to these signals pass across the gaps between the four balls, and give rise to longer or shorter series of etheric waves represented by the dotted line. So much for the "Transmitter." But how does Marconi transform these invisible waves into visible or audible signals at the distant place? He does this by virtue of a property discovered by Mr. S. A. Varley as far back as 1866, and investigated by Mr. E. Branly in 1889. They found that powder of metals, carbon, and other conductors, while offering a great resistance to the passage of an electric current when in a loose state, coheres together when electric waves act upon it, and opposes much less resistance to the electric current. It follows that if a Morse telegraph instrument at the distant place be connected in circuit with a battery and some loose metal dust, it can be adjusted to work when the etheric waves pass through the dust, and only then. In the diagram R is this Morse sic. They can be adjusted or attuned to the electric waves as a string or pipe is to sonorous waves. In this way the receiver can be made to work only when electric waves of a certain rate are passing through the tube, just as a tuning-fork resounds to a certain note; it being understood that the length of the waves can be regulated by adjustany such distances. Accordingly he immediately developed his method and his apparatus, having in mind the transmission of signals over considerable intervals. The first question that arose was the effect of the curvature of the Earth and whether the waves follow the surface of the Earth or were prop
Atlantic experiments between Poldhu, Cornwall and the United States, stations being located on Cape Cod and in Newfoundland. The trans-Atlantic transmission of signals was quite a different matter from working over 100 miles or so in Great Britain. The single aerial wire was supplanted by a set of fifty almost vertical wires, supported at the top by a horizontal wire stretched between two masts 157 1/2 feet high and 52 1/2 feet apart, converging together at the lower end in the shape of a large fan. The capacity of the condenser was increased and instead of the battery a small generator was employed so that a spark 1 1/2 inches in length would be discharged between spheres 3 inches in diameter. At the end of the year 1901 temporary stations at Newfoundland were established and experiments
sting discovery of the effect of sunlight on the propagation of electric waves over great distances. He found that the waves were absorbed during the daytime much more than at night and he eventually reached the conclusion that the ultraviolet light from the sun ionized the gaseous molecules of the air, and ionized air absorbs the energy of the electric waves, so that the fact was established that clear sunlight and blue skies, though transparent to light, serve as a fog to the powerful Hertzian waves of wireless telegraphy. For that reason the transmission of messages is carried on wit
was installed and at the same time a station at Cape Cod for commercial work was built. In December, 1902, regular communication was established between Glace Bay and Poldhu, but it was only satisfactory from Canada to England as the apparatus at the Poldhu station was less powerful and efficient than that installed in Canada. The transmission of a message from President Roosevelt to King Edward marked the practical beginning of trans-Atlantic wireless telegraphy. By this time a new device for the detection of messages was employed, as the c
in the apparatus, and in the meantime a new station in Ireland was erected. But there was no cessation of the practical experiments carried on, and in 1903 the Cunard steamship Lucania received, during her entire voyage a
iderable strengthening of the received signals at Poldhu stations. Likewise improvements in the apparatus were effected at both trans-Atlantic stations, consisting of the adoption of air condensers composed of insulated metallic plate suspended in the air, which were found much better than the condensers where glass
that is, capable of proceeding to their destination without loss of amplitude. On this account they were especially suitable for wireless telephony where they were early applied, as it was found possible so to arrange a circuit with an ordinary microphone transmitter that the amplitude of the waves would be varied in harmony with the vibrations of the human voice. These waves so modulated could be received by some form of sensitive wave detector at a distant station and reproduced in the form of sound withany monopoly of methods or instruments. Various companies and government officials have devised or modified systems so that to-da
thod for obtaining directed aerial waves which promises to be of considerable utility, enabling them to be projected in a single direction just as a searchlight beam and thus restrict the number of points at which the signals could be intercepted and read. Likewise an arrangement was perfected which enabled a station to determine the direction in which the waveafloat and its wireless apparatus working. These brought aid from various steamers in the vicinity and the passengers were speedily transferred from the sinking Republic. On April 15, 1912, the White Star liner Titanic, the largest ship afloat, sank off Newfoundland, after colliding with an iceberg. Wireless SOS calls for help brought several steamships to the scene, and 703 persons from a total of 2,206, were rescued. On October 9, 1913, the Uranium liner Volturno caught fire in mid- ocean, and her wireless calls brought ten steamships to her aid, which, despite a heavy sea, rescued 532 persons from a total of 657. Again, on November 14, 1913, the Spanish steamship Balmes caught fire off Bermuda, and at her wireless call the Cunard liner Pannonia saved all of her passengers-103. The Titanic horror led the principal maritime nations to take immediate steps to perfect their wireless systems, and the installat
th a more than favorable outlook. But wireless telegraphy to a large extent has made its own field and here its work has been greatly successful. Thus when Peary's message announcing his discovery of the North Pole came out of the Frozen North, it was by way of the wireless station on the distant Labrador coast that it reached an anxious and interested civilization. It is this same wireless that watches the progress of the fishing fleets at stations where commercial considerations would render impossible the maintenance of a subm