icon 0
icon TOP UP
rightIcon
icon Reading History
rightIcon
icon Log out
rightIcon
icon Get the APP
rightIcon

Treatise on Light

Chapter 5 ON THE STRANGE REFRACTION OF ICELAND CRYSTAL

Word Count: 14427    |    Released on: 06/12/2017

t follow the ordinary rules with respect to rays of light. I have even been under some necessity to make this research, because the refractions of this Crystal seemed to overturn our preceding explanation of regular refraction; which explanation, on the contrary, they strongly confirm, as will be seen after they have been brought under the same principle. In Iceland are found great

st from giving my own, both for the instruction of those who may not have seen his book, and because as respects some of these phenomena there is a slight difference between his observations a

it must be considered rather as a species of Talc than of Crystal. For an iron spike effects an

llel to two of these opposed faces. Even in such wise, if you will, that all the six faces are equal and similar rhombuses. The figure here added represents a piece of this Crystal

bbed against cloth it attracts straws and other light things as do amber, diamond, glass, and Spanish wax. Let a piece be covered with water for a day or more, the surface loses its natural polish. When aquafortis is poured on it it produces ebullition, especially, as I have found, if the Crystal has been pulverized. I have also found by experiment that it may be heated to redness in the fire without being in anywise altered or rendered less

e two different ones. The effect is that objects seen through it, especially such as are placed right against it, appear do

rface passes straight on without suffering refraction, and that an oblique ray is always refracted. But in this C

equilateral solid angle C, be divided into two equal parts by the straight line CG, and let it be conceived that the Crystal is intersected by a plane which passes through this line and through the

, tending from the side of the solid angle C; and on emerging from the other side of the Crystal it will turn again parallel to JK, along MZ. And as, in this extraordinary refraction, the point M is seen by the refracted ray MKI, which I consider as going to the eye at I, it necessarily follows that the point L, by virtue of the same refraction, will be seen by the refracted ray LRI, so that LR will be parallel to MK if the distance from the eye KI is supposed very

culation which I shall put at the end, it will divide itself at the point O into two rays, one of which will continue along OP in a straight line with NO, and will similarly pass out of the other side of the crystal without any refraction; but the other will be refracted and will go along OQ. And it must be noted that it

nd OQ belong. This is why I have distinguished this ordinary refraction from the other; and having measured it by exact observation, I found that its proportion, considered as to the Sines of the angles which the inci

t the portion viewed through the Crystal and the portions which appear outside it, meet together in a straight line: but the line CD will appear double, and one can distinguish the image which is due to regular refraction by the circumstance that when one views it with both eyes it seems raised up more than the other, or again by the circumstance that, when the Crystal is turned around on the paper, this image remains stationary, whereas the other image shifts and moves entirely around. Afterwards let the eye be placed at I (remaining always in the plane perpendicular through AB) so that it vie

cuts HE at P, the proportion of the refraction will be that of EN to NP, because these lines are to one another as the sines of the angles NPH, NEP, which are equal to those which the incident ray ON

ectly above the point E, I observed the appearance of the line CD, which is made by the extraordinary refraction; and having placed the eye at Q, so that this appearance made a straight lin

RS was not constant, like the ordinary refraction, but th

seen without refraction) I found, I say, then that the angle QRG was 73 degrees 20 minutes, as has been already remarked; and so it is not the ray parallel to the edge of the Crystal, which crosses it in a straight line without being refracted, as Mr. B

I found then that always, when the inclinations of two rays which come from opposite sides, as VK, SK here, are equal, their refractions KX and KT meet the bottom line HF in such wise that points X and T are equally distant from the point M, where the refractio

of the spherical emanations of light, as above, that I resumed my examination of th

ng present in much larger quantity than is that of the particles which compose it, was alone capable of causing transparency, according to what has been explained heretofore. I attributed to this emanation of waves the regular ref

in which I have explained transparency. It seemed to me that the disposition or regular arrangement of these particles could contribute to form spheroidal waves (nothing more being required for this than that the successive movement of light should spread a little more quickly in one direction than in the other) and I scarcely doub

les, of definite figure, and ranged in order. This was, that this crystal, as well as that from Iceland, has a double refraction, though less evident. For having had cut from it some well polished Prisms of different sections, I remarked in all, in viewing through them th

in the case of Iceland Crystal. I had then less trouble after that in admitting two emissions of waves in one and the same body. And since it might have been objected that in composing these two kinds of crystal of equal particles of a certain figure, regularly piled, the interstices which these particles leave and which contain the ethereal matter would scarcely suffice to transmit the wa

e to explain the phenomena of the irregular refraction, and how by these same phenomena I could determine the fi

d of the hemispherical partial waves which in a body of ordinary refraction would spread from each of these last points, as we have above explained in treating of refraction, these must here be hemi-spheroids. The axes (or rather the major diameters) of these I supposed to be oblique to the plane AB, as is AV the semi-axis or semi-major diameter of the spheroid SVT, which represents the partial wave coming from the point A, after the wave RC has reached AB. I say axis or major diameter, because the same ellipse SVT may be considered as the section of a spheroid of which the axis is AZ perpendicular to AV. But, for the present, without yet d

diameters which are not in the straight line AB. And in this way I comprehended, a matter which had seemed to me very difficult, how a ray perpendicular to a surface could suffer refraction on entering a transparent body; seeing that the wave RC, having come to the aper

nother perpendicular to the face BF passing through the edge CA, and the third perpendicular to the face AF passing through the edge BC; I knew that the refractions of the incident rays belonging to these three planes were all similar. But there could be no position of the spheroid which would have the same relation to these three sections except that in which the axis was also the axis of the solid angle C. Consequently I

egrees 57 minutes; and, imagining a spheroidal wave about the centre C, I knew, because I have just explained it, that its axis must be in the same plane, the half of which axis I hav

f 6 degrees 40 minutes; since, this being so, this ellipse satisfies what has been said about the refraction of the ray perpendicular to the surface CG, which is inclined to the perpendicular CL by the same angle. This, then, being thus disposed, and taking CM at 100,000 parts, I found by the calculation which will be given at the end, the semi-maj

surface CK. Make CO perpendicular to RC, and across the angle KCO adjust OK, equal to N and perpendicular to CO; then draw KI, which touches the Ellipse GSP, and from the point of contact I join IC, which will be the required refraction of the ray RC. The demonstration of this is, it will be seen, entirely similar to that of which we made use in explaining ordinary refraction. For the refraction of the ray RC is nothing else than the progression of the portion C of the wave CO, continued in the crystal. Now the portions H of this wave, during the time that O came to K, will have arrived at the surface CK along the straight lines Hx, and will moreover have produced

oportional to the lines CK, CG, and draw DI parallel to CM, previously determined, whi

CK, and Cg to CG. And in consequence Ii will be cut at E into equal parts by the line CM, to which DI and di are parallel. And because CM is the conjugate diameter to CG, it follows that iI will be parallel to gG. Therefore if one prolongs the refracted rays CI, Ci, until they meet the tangent ML at T and t, the distances MT, Mt, will also be equal. And so, by our hypothe

an 8 to 5. And having regard to some other observations and phenomena of which I shall speak afterwards, I put N at 156,962 parts, of which the semi-diameter CG is found to contain 98,779, making this ratio 8 to 5-1/29. Now this proportion, whi

GPg, and the line N; and CM the refraction of the perpendicular ray FC, from which it diverges b

be the perpendicular on CG. Then as the line N is to CG let CV be to CD, and let DI be drawn parallel to CM, cutting

etofore explained that CI is the refraction of the ray RC. Now since the angle RCO is a right angle, it is easy to see that the right-angled triangles RCV, KCO, are similar. As then, CK is to KO, so also is RC to CV. But KO is equal to N, and RC to CG: then

the perpendicular, so here there is such a proportion between CV and CD or IE; that is to say between the Sine of the angle which the incident ray makes with the perpendicular, and the h

act, that if ABPS be the spheroid by which light spreads in the Crystal in a certain space of time (which spreading, as has been said, serves for the

fraction was 5 to 3; that is to say, that N being the radius of a spherical wave of light in air, its extension in the crystal would, in the same space of time, form a sphere the radius of which would be to N as 3 to 5. Now 156,962 is to 93,410 as 5 to 3 less 1/41. So that

n directions perpendicular to the axis BS of the spheroid that one of these propagations occurs more rapidly than the other; but that they have a

efraction. For supposing the same things as before, and that the ray makes with the same surface gG the angle RCG of 73 degrees 20 minutes, inclining to the same side as the crystal (of which ray mention has been made above); if one inve

20 minutes, CV will be 28,330. But because CI is the refraction of the ray RC, the pr

g added to ML, which is 11,609 (namely the sine of the angle LCM, which is 6 degrees 40 minutes, taking CM 100,000 as radius) we get LT 27,936; and this is to LC 99,324 as CV to VR, that is to say

h proves that the reciprocal relation of refraction obtains in this crystal the same as in other transparent bodies; that is to say, that if a ray RC in meeting the surface of the c

e formed in the air from the point I a partial spherical wave having a semi-diameter IA equal to KO, since KO has been traversed in an equal time. Similarly, if one considers some other point of the wave IK, such as h, it will go along hm, parallel to CI, to meet the surface IB, while the point K traverses Kl equal to hm; and while this accomplishes the remainder lB, there will start from the point m a partial wave the semi-diameter of which, mn, will have the same ratio to lB as IA to KB. Whence it is evident that this wave of semi-diameter mn, and the other of semi-diameter IA will have

relation of refraction holds good in this crystal as well as in or

crystal, and of the refractions there produced, on which, a

rfect rhombus, the obtuse angles of which are equally divided by the straigh

al at right angles, is that in which the refracted ray also is found. But the refractions which appertain to every other section of this crystal have this strange property that the refracted ray always quits the plane of the incident ray perpendicular to the surface, and turns away towards the side of the slope of the crystal. For which fact we sh

which Qq, which is in the line AH, will necessarily be one of the major diameters of the spheroid; because the axis of the spheroid being in the plane through FEB, to which QC is perpendicular, it follows that QC is also perpendicular to the axis of the spheroid,

KCH, making in the spheroid the semi-ellipse QMq, which will be given, since the angle MCL is given of value 6 degrees 40 minutes. And it is certain, according to what has been explained above, Article 27, that a plane which would touch the spheroid at the point M, where I suppose the straight line CM to meet the surface, would be parallel to the plane QGq. If then through the point K one now draws KS parallel to Gg, which will be parallel also to QX, the tangent to the Ellipse QGq at Q; and if one conceives a plane passing through KS and touching the spheroid, the point of contact will necessarily be in the Ellipse

ectangle Kc along lines parallel to OK; and from the points of their incidences there will originate, beyond that, in the crystal partial hemi-spheroids, similar to the hemi-spheroid QMq, and similarly disposed. These hemi-spheroids will necessarily all touch the plane of the parallelogram KIik at the same instant that Oo has reached Kk. Which is easy to comprehend, since, of these hemi-spheroids, all those which have their centres along the line CK, touch this plane in the line KI (for this is to be shown in the same way as we have demonstrated the refraction of the oblique ray in the principal section thro

the case of the section through FE; and the demonstration will be the same. But it appears that the said proportion of the refraction is less here than in the section through FEB; for it was there the same as the ratio of N to CG, that is to say, as 156,962 t

s raised up by this irregular refraction more than when one puts one's eyes in the plane of section through AH: and the difference of these elevations appears by comparison with the other ordinary refraction of the crystal, the proportion of which is as 5 to 3, and which always raises the letters equally, and higher than the ir

s at the same time to ascertain the apparent place of a point of an object place

figure represent separately the section through Qq and CL, in which section there is also the ray RC, and let the semi-elliptic plane through Q

m D, and that these rays meet the two eyes at Rr; it is certain that the point I will appear raised to S where the straight lines RC, rc, meet; which point S is in DP, perpendicular

ch BV is drawn perpendicular to Qq; and let the proportion of the refractio

foot or so from the crystal, and consequently the angle RSr very small, VB may be considered as equal to the semi-diameter CQ, and DP as equal to CL; then as N is to CQ so is CQ to DS. But N is valued at 156,962 parts, of which CM contains 100,000 and CQ 105,032. Then DS will have 70

that the point I should appear at S where the straight lines RC, rc, meet when prolonged; and that this point will fall in the line DP perpendicular to Gg. If one draws IP perpendicular to this DP, it will be the distance PS which will mark the apparent elevation of the point I. Let there be described on Gg a semicircle cutting CR at B, from which let BV be drawn perpendicular to Gg; and let N to GC be the proportion of the refraction in this section, as in Article 28. Since then CI is the refraction of the radius BC, and DI is parallel to CM, VC must be to CD as N to GC, according to what has been demonstrated in Article 31. But as VC is to CD so is BV to DS. Let ML be drawn perpendicular to CL. And because I

by the rays PCR, Pcr, refracted equally at the surface Cc, this point must needs appear to be at S, in the perpendicular PD where the lines RC, rc, meet when prolonged: and one knows that the line PC is to CS as 5 to 3, since they are to one anot

d that this agrees perfectly with experiment; that is to say by placing the eyes above in the plane which cuts the crystal according to the shorter diameter of the rhombus, the regular refraction will lift up the letters to E; and one will see the bottom, and the letters over which it is placed, lifted up to D by the irregular refraction. But by placi

stant from the equilateral solid angle of the Crystal. That follows, indeed, from all that has been hitherto demonstrated about the irregular refraction; and it is particularly shown by these last demonstrations, from which one sees that the point I ap

around about the immovable crystal, while looking down from above. And all this is still found conformable to our hypothesis, as any one can assure himself after I shall have shown here the way of finding the irregular refractions which appear in all other sections of the crystal, besides the two which we have

CK, so as to be perpendicular to OC and equal to the line N, which I suppose to measure the travel of the light in air during the time that it spreads in the crystal through the spheroid HDEM. Then in the plane of the Ellipse HDE let KT be drawn, through the p

t line KT, and which will touch the spheroid, will touch it at a point in the Ellipse HME, according to the Lemma which will be demonstrated at the end of the Chapter. Now this point is necessarily the point I which is sought, since the plane drawn through TK can touch the spheroid at one point only. And this point I is easy to determine, since it is needful only to draw from the point T, which is in the plane of this Ellipse, the tangent TI, in the way shown previously. For the Ellipse HME is given, a

y be in the plane through RC and CK. Because every plane, parallel to the straight line HF, or TK, whic

is observed in fact. And this being so it affords no slight proof of the truth of our suppositions and principles. But what I am going to add here confirms them again marvellously. It is this: that there

n which there will also be the axis SS of a spheroidal wave of light spreading in the crystal from the centre C; and

arly to the said parallelogram, the refraction of the surfaces ought to be governed by the hemi-spheroids PSP, and so for others. But I saw that if the plane NN was almost perpendicular to the plane GG, making the angle NCG, which is on the side A, an angle of 90 degrees 40 minutes, the hemi-spheroids NGN would become similar to the hemi-spheroids GNG, since the planes NN and GG were equally inclined by an angle of 45 degrees 20 minutes to the axis SS. In consequence it must needs be, if our theory is true, tha

such that the perpendicular ray should suffer thereby no deviation; and that for oblique rays there would always be an irregular refra

is, the perpendicular ray ought to suffer no refraction; and that for oblique rays there were different me

regular refractions as the natural surfaces, and which nevertheless would cleave in quite other ways, and not in directions parallel to any of their faces. That out of it one would be able to fashion pyramids, having their base square, pentagonal, hexagonal, or with as many sides as one desired, all the s

he bases would refract the perpendicular ray, although they would yet all cause double refraction for oblique rays. The cube is included among

is crystal seems to be composed, and according to which it splits in three different senses, that t

e here the process of which I have made use to cut it, and to polish it. Cutting is easy by the slicing wheels of lapidaries, or in the way in which

crystal little by little, in the same way as spectacle glasses, and polishes it simply by continuing the work, but ever reducing the material. I have not, however, been able to give it perfect clarity

discerned in it quite distinctly. And this aid is specially necessary when it is wished to polish the natural surfaces to remove the inequalities; because one can

till now to find its cause, I do not for that reason wish to desist from describing it, in order to give opportunity to others to investigate it. It seems that it will be necessa

rregular refraction at EF. And the same thing occurs not only in this disposition, but also in all those cases in which the principal section of each of the pieces is situated in one and the same plane, without it being needful for the two neighbouring surfaces to be parallel. Now it is marvellous why the rays CE and DG, incident from the air on the lower crystal, do not divide themselves the same as the first ray AB. One would say that it must be that the ray DG in passing through the upper piece has lost something which is necessary to move the matter which serves for the irregular refraction; and tha

ction in the lower crystal so that from the single ray AB there are four, sometimes of equal brightness, sometimes some much less bright than others

ms that one is obliged to conclude that the waves of light, after having passed through the first crystal, acquire a certain form or disposition in virtue of which, when meeting the texture of the second crystal, in certain positions, they can move the two d

ng the cause of the extraordinary figure of this crystal, and why it clea

among flowers there are many which have their leaves disposed in ordered polygons, to the number of 3, 4, 5, or 6 sides, but

operates. But it is not now my intention to treat fully of this matter. It seems that in general the regularity which occurs in these productions comes from the arrangement of the small invisible equal particles of which they are composed. And, coming to our Iceland Crystal, I say that if there were a pyramid such as ABCD, composed of small rounded corpuscles, not spherical but flattened spheroids, such as would be made by the rotation of the ellipse GH around its lesser diameter EF (of which the ratio to the greater diameter is very nearly that of 1 to the square root of 8)-I say that then the solid angle of the point D would be equal to the obtuse and equilateral angle of this Crystal. I say, further, that if these corpuscles were lightly stuck together, on breaking this pyramid it would break along faces parallel to those that make its point: and by this means, as it is easy to see, it would produce prisms similar to those of

pyramidal figure. But when a mass is composed interiorly only of these little spheroids thus piled up, whatever form it may have exteriorly, it is certain, by the same reasoning which I have just

ht always to split rather along these three planes than along the two others. When one has a number of spheroids of the form above described, and ranges them in a pyramid, one sees why the two methods of division are more difficult. For in the case of that division which would be parallel to the base, each spheroid would be obliged to detach itself from three others which it touches upon their flattened surfaces, which hold more strongly than the contacts at the edges. And besides that, this division will not occur along entire layers, because each

e flattened surfaces, and two at the edges. So that this division is likewise more difficult than that which is made parallel to one of the surfaces of the crystal; where, as we have sa

hough the two pieces still hold together. All this proves then that the composition of the crystal is such as we have stated. To which I again add this experiment; that if one passes a knife scraping along any one of the natural surfaces, and downwards as it were from the equilateral obtuse angle, that is to say from the a

her they arrange themselves thus in coming into being and as fast as they are produced, which seems to me more probable. To develop truths so recondite there would be needed a knowledge of nature much greater than that whi

have been suppose

cult to do with ultimate exactitude, because the edges such as CA, CB, in this figure, are generally worn, and not quite straight. For more certainty, therefore, I preferred to measure actually the obtuse angle by which the faces C

re, I see that each of the angles should be 105 degrees, namely equal to the angle OCN; and that each of the sides should be of as many degrees as the angle ACB, or ACF, or BCF. Having then drawn the arc FQ perpendicular to the side AB, which it divides equally

s 70 degrees 57 minutes. This again is easily shown in the same spherical triangle ABF, in which it appears that the arc FQ is as many degrees as the angle GCF in the

easily calculated by the same spherical triangle. For by drawing the other arc AD which cuts BF equally, and intersects FQ at S, this point will be the centre of the triangle. And it is easy to see that the arc SQ is the measure of the angle GCH

makes with CL, perpendicular on DM, is 6 degrees 40 minutes, and its semi-minor axis CS making with CG (which is parallel to MD) an angle GCS of 45 degrees 20 minute

s 45 degrees 20 minutes, there remains MCP, 38 degrees 40 minutes. Considering then CM as a radius of 100,000 parts, MN, the sine of 38 degrees 40 minutes, will be 62,479. And in the right-angled triangle MND, MN will be to ND as the radius of the Tables is to the tangent of 45 degrees 20 minutes (because the angle NMD is equal to DCL, or GCS);

s to the tangent of 44 degrees 40 minutes, so will OM 78,079 be to OZ 77,176. But OC is 62,479 of these same parts of which CM is 100,000, because it is equal to MN,

grees 40 minutes. And since the angle LCD is 45 degrees 20 minutes, being equal to GCS, the side LD is found to be 100,486: whence deducting ML 11,609 there will remain MD 88,877. Now as CD (which was 141,289) is to DM 88,877, so will CP 105,032 be to PE 66,070. But as the rectangle MEH (or rather the d

h has been

line, though not parallel to one another, all the points of contact of the line, as well as of the plan

to this line at the points O and A. It is required to demonstrate that the points B, O, and A a

the planes which touch the spheroid in these same points, generate straight lines, as OH and AS, which will, as is easy to see, be parallel to BM; and all three, BM, OH, AS, will touch the Ellipses LBD, POP, QAQ in these points, B, O, A; since they are in the planes of these ellipses, and at the same time in the planes which touch the spheroid. If now from these points B, O, A, there are drawn the straight lines BK, ON, AR, through the centres of the same ellipses, and if through these centres there are drawn also the diameters LD, PP, QQ, parallel to the tangents BM, OH, AS; these will be conjugate to the aforesaid BK, ON, AR. And because the three ellipses are similar and similar

Claim Your Bonus at the APP

Open