In our excursion to the valley with sandstone ledges we witnessed a process which is going forward in all lands. Everywhere the rocks are crumbling away; their fragments are creeping down hillsides to the stream ways and are carried by the streams to the sea, where they are rebuilt into rocky layers. When again the rocks are lifted to form land the process will begin anew; again they will crumble and creep down slopes and be washed by streams to the sea. Let us begin our study of this long cycle of change at the point where rocks disintegrate and decay under the action of the weather.
In studying now a few outcrops and quarries we shall learn a little of some common rocks and how they weather away.
STRATIFICATION AND JOINTING. At the sandstone ledges we saw that the rock was divided into parallel layers. The thicker layers are known as STRATA, and the thin leaves into which each stratum may sometimes be split are termed LAMINAE. To a greater or less degree these layers differ from each other in fineness of grain, showing that the material has been sorted. The planes which divide them are called BEDDING PLANES.
Besides the bedding planes there are other division planes, which cut across the strata from top to bottom. These are found in all rocks and are known as joints. Two sets of joints, running at about right angles to each other, together with the bedding planes, divide the sandstone into quadrangular blocks.
SANDSTONE. Examining a piece of sandstone we find it composed of grains quite like those of river sand or of sea beaches. Most of the grains are of a clear glassy mineral called quartz. These quartz grains are very hard and will scratch the steel of a knife blade. They are not affected by acid, and their broken surfaces are irregular like those of broken glass.
The grains of sandstone are held together by some cement. This may be calcareous, consisting of soluble carbonate of lime. In brown sandstones the cement is commonly ferruginous,-hydrated iron oxide, or iron rust, forming the bond, somewhat as in the case of iron nails which have rusted together. The strongest and most lasting cement is siliceous, and sand rocks whose grains are closely cemented by silica, the chemical substance of which quartz is made, are known as quartzites.
We are now prepared to understand how sandstone is affected by the action of the weather. On ledges where the rock is exposed to view its surface is more or less discolored and the grains are loose and may be rubbed off with the finger. On gentle slopes the rock is covered with a soil composed of sand, which evidently is crumbled sandstone, and dark carbonaceous matter derived from the decay of vegetation. Clearly it is by the dissolving of the cement that the rock thus breaks down to loose sand. A piece of sandstone with calcareous cement, or a bit of old mortar, which is really an artificial stone also made of sand cemented by lime, may be treated in a test tube with hydrochloric acid to illustrate the process.
A LIMESTONE QUARRY. Here also we find the rock stratified and jointed (Fig. 2). On the quarry face the rock is distinctly seen to be altered for some distance from its upper surface. Below the altered zone the rock is sound and is quarried for building; but the altered upper layers are too soft and broken to be used for this purpose. If the limestone is laminated, the laminae here have split apart, although below they hold fast together. Near the surface the stone has become rotten and crumbles at the touch, while on the top it has completely broken down to a thin layer of limestone meal, on which rests a fine reddish clay.
Limestone is made of minute grains of carbonate of lime all firmly held together by a calcareous cement. A piece of the stone placed in a test tube with hydrochloric acid dissolves with brisk effervescence, leaving the insoluble impurities, which were disseminated through it, at the bottom of the tube as a little clay.
We can now understand the changes in the upper layers of the quarry. At the surface of the rock the limestone has completely dissolved, leaving the insoluble residue as a layer of reddish clay. Immediately below the clay the rock has disintegrated into meal where the cement between the limestone grains has been removed, while beneath this the laminae are split apart where the cement has been dissolved only along the planes of lamination where the stone is more porous. As these changes in the rock are greatest at the surface and diminish downward, we infer that they have been caused by agents working downward from the surface.
At certain points these agencies have been more effective than elsewhere. The upper rock surface is pitted. Joints are widened as they approach the surface, and along these seams we may find that the rock is altered even down to the quarry floor.
A SHALE PIT. Let us now visit some pit where shale-a laminated and somewhat hardened clay-is quarried for the manufacture of brick. The laminae of this fine-grained rock may be as thin as cardboard in places, and close joints may break the rock into small rhombic blocks. On the upper surface we note that the shale has weathered to a clayey soil in which all traces of structure have been destroyed. The clay and the upper layers of the shale beneath it are reddish or yellow, while in many cases the color of the unaltered rock beneath is blue.
THE SEDIMENTARY ROCKS. The three kinds of layered rocks whose acquaintance we have made-sandstone, limestone, and shale-are the leading types of the great group of stratified, or sedimentary, rocks. This group includes all rocks made of sediments, their materials having settled either in water upon the bottoms of rivers, lakes, or seas, or on dry land, as in the case of deposits made by the wind and by glaciers. Sedimentary rocks are divided into the fragmental rocks-which are made of fragments, either coarse or fine-and the far less common rocks which are constituted of chemical precipitates.
The sedimentary rocks are divided according to their composition into the following classes:
1. The arenaceous, or quartz rocks, including beds of loose sand and gravel, sandstone, quartzite, and conglomerate (a rock made of cemented rounded gravel or pebbles).
2. The calcareous, or lime rocks, including limestone and a soft white rock formed of calcareous powder known as chalk.
3. The argillaceous, or clay rocks, including muds, clays, and shales. These three classes pass by mixture into one another. Thus there are limy and clayey sandstones, sandy and clayey limestones, and sandy and limy shales.
GRANITE. This familiar rock may be studied as an example of the second great group of rocks,-the unstratified, or igneous rocks. These are not made of cemented sedimentary grains, but of interlocking crystals which have crystallized from a molten mass. Examining a piece of granite, the most conspicuous crystals which meet the eye are those of feldspar. They are commonly pink, white, or yellow, and break along smooth cleavage planes which reflect the light like tiny panes of glass. Mica may be recognized by its glittering plates, which split into thin elastic scales. A third mineral, harder than steel, breaking along irregular surfaces like broken glass, we identify as quartz.
How granite alters under the action of the weather may be seen in outcrops where it forms the bed rock, or country rock, underlying the loose formations of the surface, and in many parts of the northern states where granite bowlders and pebbles more or less decayed may be found in a surface sheet of stony clay called the drift. Of the different minerals composing granite, quartz alone remains unaltered. Mica weathers to detached flakes which have lost their elasticity. The feldspar crystals have lost their luster and hardness, and even have decayed to clay. Where long- weathered granite forms the country rock, it often may be cut with spade or trowel for several feet from the surface, so rotten is the feldspar, and here the rock is seen to break down to a clayey soil containing grains of quartz and flakes of mica.
These are a few simple illustrations of the surface changes which some of the common kinds of rocks undergo. The agencies by which these changes are brought about we will now take up under two divisions,-CHEMICAL AGENCIES producing rock decay and MECHANICAL AGENCIES producing rock disintegration.
THE CHEMICAL WORK OF WATER
As water falls on the earth in rain it has already absorbed from the air carbon dioxide (carbonic acid gas) and oxygen. As it sinks into the ground and becomes what is termed ground water, it takes into solution from the soil humus acids and carbon dioxide, both of which are constantly being generated there by the decay of organic matter. So both rain and ground water are charged with active chemical agents, by the help of which they corrode and rust and decompose all rocks to a greater or less degree. We notice now three of the chief chemical processes concerned in weathering,- solution, the formation of carbonates, and oxidation.
SOLUTION. Limestone, although so little affected by pure water that five thousand gallons would be needed to dissolve a single pound, is easily dissolved in water charged with carbon dioxide. In limestone regions well water is therefore "hard." On boiling the water for some time the carbon dioxide gas is expelled, the whole of the lime carbonate can no longer be held in solution, and much of it is thrown down to form a crust or "scale" in the kettle or in the tubes of the steam boiler. All waters which flow over limestone rocks or soak through them are constantly engaged in dissolving them away, and in the course of time destroy beds of vast extent and great thickness.
The upper surface of limestone rocks becomes deeply pitted, as we saw in the limestone quarry, and where the mantle of waste has been removed it may be found so intricately furrowed that it is difficult to traverse.
Beds of rock salt buried among the strata are dissolved by seeping water, which issues in salt springs. Gypsum, a mineral composed of hydrated sulphate of lime, and so soft that it may be scratched with the finger nail, is readily taken up by water, giving to the water of wells and springs a peculiar hardness difficult to remove.
The dissolving action of moisture may be noted on marble tombstones of some age, marble being a limestone altered by heat and pressure and composed of crystalline grains. By assuming that the date on each monument marks the year of its erection, one may estimate how many years on the average it has taken for weathering to loosen fine grains on the polished surface, so that they may be rubbed off with the finger, to destroy the polish, to round the sharp edges of tool marks in the lettering, and at last to open cracks and seams and break down the stone. We may notice also whether the gravestones weather more rapidly on the sunny or the shady side, and on the sides or on the top.
The weathered surface of granular limestone containing shells shows them standing in relief. As the shells are made of crystalline carbonate of lime, we may infer whether the carbonate of lime is less soluble in its granular or in its crystalline condition.
THE FORMATION OF CARBONATES. In attacking minerals water does more than merely take them into solution. It decomposes them, forming new chemical compounds of which the carbonates are among the most important. Thus feldspar consists of the insoluble silicate of alumina, together with certain alkaline silicates which are broken up by the action of water containing carbon dioxide, forming alkaline carbonates. These carbonates are freely soluble and contribute potash and soda to soils and river waters. By the removal of the soluble ingredients of feldspar there is left the silicate of alumina, united with water or hydrated, in the condition of a fine plastic clay which, when white and pure, is known as KAOLIN and is used in the manufacture of porcelain. Feldspathic rocks which contain no iron compounds thus weather to whitish crusts, and even apparently sound crystals of feldspar, when ground to thin slices and placed under the microscope, may be seen to be milky in color throughout because an internal change to kaolin has begun.
OXIDATION. Rocks containing compounds of iron weather to reddish crusts, and the seams of these rocks are often lined with rusty films. Oxygen and water have here united with the iron, forming hydrated iron oxide. The effects of oxidation may be seen in the alteration of many kinds of rocks and in red and yellow colors of soils and subsoils.
Pyrite is a very hard mineral of a pale brass color, found in scattered crystals in many rocks, and is composed of iron and sulphur (iron sulphide). Under the attack of the weather it takes up oxygen, forming iron sulphate (green vitriol), a soluble compound, and insoluble hydrated iron oxide, which as a mineral is known as limonite. Several large masses of iron sulphide were placed some years ago on the lawn in front of the National Museum at Washington. The mineral changed so rapidly to green vitriol that enough of this poisonous compound was washed into the ground to kill the roots of the surrounding grass.
AGENTS OF MECHANICAL DISINTEGRATION
HEAT AND COLD. Rocks exposed to the direct rays of the sun become strongly heated by day and expand. After sunset they rapidly cool and contract. When the difference in temperature between day and night is considerable, the repeated strains of sudden expansion and contraction at last become greater than the rocks can bear, and they break, for the same reason that a glass cracks when plunged into boiling water (Fig. 5).
Rocks are poor conductors of heat, and hence their surfaces may become painfully hot under the full blaze of the sun, while the interior remains comparatively cool. By day the surface shell expands and tends to break loose from the mass of the stone. In cooling in the evening the surface shell suddenly contracts on the unyielding interior and in time is forced off in scales.
Many rocks, such as granite, are made up of grains of various minerals which differ in color and in their capacity to absorb heat, and which therefore contract and expand in different ratios. In heating and cooling these grains crowd against their neighbors and tear loose from them, so that finally the rock disintegrates into sand.
The conditions for the destructive action of heat and cold are most fully met in arid regions when vegetation is wanting for lack of sufficient rain. The soil not being held together by the roots of plants is blown away over large areas, leaving the rocks bare to the blazing sun in a cloudless sky. The air is dry, and the heat received by the earth by day is therefore rapidly radiated at night into space. There is a sharp and sudden fall of temperature after sunset, and the rocks, strongly heated by day, are now chilled perhaps even to the freezing point.
In the Sahara the thermometer has been known to fall 131 degrees F. within a few hours. In the light air of the Pamir plateau in central Asia a rise of 90 degrees F. has been recorded from seven o'clock in the morning to one o'clock in the afternoon. On the mountains of southwestern Texas there are frequently heard crackling noises as the rocks of that arid region throw off scales from a fraction of an inch to four inches in thickness, and loud reports are made as huge bowlders split apart. Desert pebbles weakened by long exposure to heat and cold have been shivered to fine sharp-pointed fragments on being placed in sand heated to 180 degrees F. Beds half a foot thick, forming the floor of limestone quarries in Wisconsin, have been known to buckle and arch and break to fragments under the heat of the summer sun.
FROST. By this term is meant the freezing and thawing of water contained in the pores and crevices of rocks. All rocks are more or less porous and all contain more or less water in their pores. Workers in stone call this "quarry water," and speak of a stone as "green" before the quarry water has dried out. Water also seeps along joints and bedding planes and gathers in all seams and crevices. Water expands in freezing, ten cubic inches of water freezing to about eleven cubic inches of ice. As water freezes in the rifts and pores of rocks it expands with the irresistible force illustrated in the freezing and breaking of water pipes in winter. The first rift in the rock, perhaps too narrow to be seen, is widened little by little by the wedges of successive frosts, and finally the rock is broken into detached blocks, and these into angular chip-stone by the same process.
It is on mountain tops and in high latitudes that the effects of frost are most plainly seen. "Every summit" says Whymper, "amongst the rock summits upon which I have stood has been nothing but a piled-up heap of fragments" (Fig. 7). In Iceland, in Spitsbergen, in Kamchatka, and in other frigid lands large areas are thickly strewn with sharp-edged fragments into which the rock has been shattered by frost.
ORGANIC AGENTS
We must reckon the roots of plants and trees among the agents which break rocks into pieces. The tiny rootlet in its search for food and moisture inserts itself into some minute rift, and as it grows slowly wedges the rock apart. Moreover, the acids of the root corrode the rocks with which they are in contact. One may sometimes find in the soil a block of limestone wrapped in a mesh of roots, each of which lies in a little furrow where it has eaten into the stone.
Rootless plants called lichens often cover and corrode rocks as yet bare of soil; but where lichens are destroying the rock less rapidly than does the weather, they serve in a way as a protection.
CONDITIONS FAVORING DISINTEGRATION AND DECAY. The disintegration of rocks under frost and temperature changes goes on most rapidly in cold and arid climates, and where vegetation is scant or absent. On the contrary, the decay of rocks under the chemical action of water is favored by a warm, moist climate and abundant vegetation. Frost and heat and cold can only act within the few feet from the surface to which the necessary temperature changes are limited, while water penetrates and alters the rocks to great depths.
The pupil may explain.
In what ways the presence of joints and bedding planes assists in the breaking up and decay of rocks under the action of the weather.
Why it is a good rule of stone masons never to lay stones on edge, but always on their natural bedding planes.
Why stones fresh from the quarry sometimes go to pieces in early winter, when stones which have been quarried for some months remain uninjured.
Why quarrymen in the northern states often keep their quarry floors flooded during winter.
Why laminated limestone should not be used for curbstone.
Why rocks composed of layers differing in fineness of grain and in ratios of expansion do not make good building stone.
Fine-grained rocks with pores so small that capillary attraction keeps the water which they contain from readily draining away are more apt to hold their pores ten elevenths full of water than are rocks whose pores are larger. Which, therefore, are more likely to be injured by frost?
Which is subject to greater temperature changes, a dark rock or one of a light color? the north side or the south side of a valley?
THE MANTLE OF ROCK WASTE
We have seen that rocks are everywhere slowly wasting away. They are broken in pieces by frost, by tree roots, and by heat and cold. They dissolve and decompose under the chemical action of water and the various corrosive substances which it contains, leaving their insoluble residues as residual clays and sands upon the surface. As a result there is everywhere forming a mantle of rock waste which covers the land. It is well to imagine how the country would appear were this mantle with its soil and vegetation all scraped away or had it never been formed. The surface of the land would then be everywhere of bare rock as unbroken as a quarry floor.
THE THICKNESS OF THE MANTLE. In any locality the thickness of the mantle of rock waste depends as much on the rate at which it is constantly being removed as on the rate at which it is forming. On the face of cliffs it is absent, for here waste is removed as fast as it is made. Where waste is carried away more slowly than it is produced, it accumulates in time to great depth.
The granite of Pikes Peak is disintegrated to a depth of twenty feet. In the city of Washington granite rock is so softened to a depth of eighty feet that it can be removed with pick and shovel. About Atlanta, Georgia, the rocks are completely rotted for one hundred feet from the surface, while the beginnings of decay may be noticed at thrice that depth. In places in southern Brazil the rock is decomposed to a depth of four hundred feet.
In southwestern Wisconsin a reddish residual clay has an average depth of thirteen feet on broad uplands, where it has been removed to the least extent. The country rock on which it rests is a limestone with about ten per cent of insoluble impurities. At least how thick, then, was that portion of the limestone which has rotted down to the clay?
DISTINGUISHING CHARACTERISTICS OF RESIDUAL WASTE. We must learn to distinguish waste formed in place by the action of the weather from the products of other geological agencies. Residual waste is unstratified. It contains no substances which have not been derived from the weathering of the parent rock. There is a gradual transition from residual waste into the unweathered rock beneath. Waste resting on sound rock evidently has been shifted and was not formed in place.