Login to ManoBook
icon 0
icon TOP UP
rightIcon
icon Reading History
rightIcon
icon Log out
rightIcon
icon Get the APP
rightIcon
Encyclopaedia Britannica, 11th Edition, Volume 4, Part 4

Encyclopaedia Britannica, 11th Edition, Volume 4, Part 4

Various

5.0
Comment(s)
2
View
91
Chapters

Encyclopaedia Britannica, 11th Edition, Volume 4, Part 4 by Various

Chapter 1 4 , 7

29 , 8

33 , 31

128 , 132

545 , 163

673 , &c.

The first of these, 1/4, gives the Julian intercalation of one day in four years, and is considerably too great. It supposes the year to contain 365 days 6 hours.

The second, 7/29, gives seven intercalary days in twenty-nine years, and errs in defect, as it supposes a year of 365 days 5 hours 47 min. 35 sec.

The third, 8/33, gives eight intercalations in thirty-three years or seven successive intercalations at the end of four years respectively, and the eighth at the end of five years. This supposes the year to contain 365 days 5 hours 49 min. 5.45 sec.

The fourth fraction, 31/128 = (24 + 7) / (99 + 29) = (3 × 8 + 7) / (3 × 33 + 29) combines three periods of thirty-three years with one of twenty-nine, and would consequently be very convenient in application. It supposes the year to consist of 365 days 5 hours 48 min. 45 sec., and is practically exact.

The fraction 8/33 offers a convenient and very accurate method of intercalation. It implies a year differing in excess from the true year only by 19.45 sec., while the Gregorian year is too long by 26 sec. It produces a much nearer coincidence between the civil and solar years than the Gregorian method; and, by reason of its shortness of period, confines the evagations of the mean equinox from the true within much narrower limits. It has been stated by Scaliger, Weidler, Montucla, and others, that the modern Persians actually follow this method, and intercalate eight days in thirty-three [v.04 p.0991]years. The statement has, however, been contested on good authority; and it seems proved (see Delambre, Astronomie Moderne, tom. i. p.81) that the Persian intercalation combines the two periods 7/29 and 8/33. If they follow the combination (7 + 3 × 8) / (29 + 3 × 33) = 31/128 their determination of the length of the tropical year has been extremely exact. The discovery of the period of thirty-three years is ascribed to Omar Khayyam, one of the eight astronomers appointed by Jelāl ud-Din Malik Shah, sultan of Khorasan, to reform or construct a calendar, about the year 1079 of our era.

If the commencement of the year, instead of being retained at the same place in the seasons by a uniform method of intercalation, were made to depend on astronomical phenomena, the intercalations would succeed each other in an irregular manner, sometimes after four years and sometimes after five; and it would occasionally, though rarely indeed, happen, that it would be impossible to determine the day on which the year ought to begin. In the calendar, for example, which was attempted to be introduced in France in 1793, the beginning of the year was fixed at midnight preceding the day in which the true autumnal equinox falls. But supposing the instant of the sun's entering into the sign Libra to be very near midnight, the small errors of the solar tables might render it doubtful to which day the equinox really belonged; and it would be in vain to have recourse to observation to obviate the difficulty. It is therefore infinitely more commodious to determine the commencement of the year by a fixed rule of intercalation; and of the various methods which might be employed, no one perhaps is on the whole more easy of application, or better adapted for the purpose of computation, than the Gregorian now in use. But a system of 31 intercalations in 128 years would be by far the most perfect as regards mathematical accuracy. Its adoption upon our present Gregorian calendar would only require the suppression of the usual bissextile once in every 128 years, and there would be no necessity for any further correction, as the error is so insignificant that it would not amount to a day in 100,000 years.

Of the Lunar Year and Luni-solar Periods.-The lunar year, consisting of twelve lunar months, contains only 354 days; its commencement consequently anticipates that of the solar year by eleven days, and passes through the whole circle of the seasons in about thirty-four lunar years. It is therefore so obviously ill-adapted to the computation of time, that, excepting the modern Jews and Mahommedans, almost all nations who have regulated their months by the moon have employed some method of intercalation by means of which the beginning of the year is retained at nearly the same fixed place in the seasons.

In the early ages of Greece the year was regulated entirely by the moon. Solon divided the year into twelve months, consisting alternately of twenty-nine and thirty days, the former of which were called deficient months, and the latter full months. The lunar year, therefore, contained 354 days, falling short of the exact time of twelve lunations by about 8.8 hours. The first expedient adopted to reconcile the lunar and solar years seems to have been the addition of a month of thirty days to every second year. Two lunar years would thus contain 25 months, or 738 days, while two solar years, of 365? days each, contain 730? days. The difference of 7? days was still too great to escape observation; it was accordingly proposed by Cleostratus of Tenedos, who flourished shortly after the time of Thales, to omit the biennary intercalation every eighth year. In fact, the 7? days by which two lunar years exceeded two solar years, amounted to thirty days, or a full month, in eight years. By inserting, therefore, three additional months instead of four in every period of eight years, the coincidence between the solar and lunar year would have been exactly restored if the latter had contained only 354 days, inasmuch as the period contains 354 × 8 + 3 × 30 = 2922 days, corresponding with eight solar years of 365? days each. But the true time of 99 lunations is 2923.528 days, which exceeds the above period by 1.528 days, or thirty-six hours and a few minutes. At the end of two periods, or sixteen years, the excess is three days, and at the end of 160 years, thirty days. It was therefore proposed to employ a period of 160 years, in which one of the intercalary months should be omitted; but as this period was too long to be of any practical use, it was never generally adopted. The common practice was to make occasional corrections as they became necessary, in order to preserve the relation between the octennial period and the state of the heavens; but these corrections being left to the care of incompetent persons, the calendar soon fell into great disorder, and no certain rule was followed till a new division of the year was proposed by Meton and Euctemon, which was immediately adopted in all the states and dependencies of Greece.

The mean motion of the moon in longitude, from the mean equinox, during a Julian year of 365.25 days (according to Hansen's Tables de la Lune, London, 1857, pages 15, 16) is, at the present date, 13 × 360° + 477644″.409; that of the sun being 360° + 27″.685. Thus the corresponding relative mean geocentric motion of the moon from the sun is 12 × 360° + 477616″.724; and the duration of the mean synodic revolution of the moon, or lunar month, is therefore 360° / (12 × 360° + 477616″.724) × 365.25 = 29.530588 days, or 29 days, 12 hours, 44 min. 2.8 sec.

The Metonic Cycle, which may be regarded as the chef-d'?uvre of ancient astronomy, is a period of nineteen solar years, after which the new moons again happen on the same days of the year. In nineteen solar years there are 235 lunations, a number which, on being divided by nineteen, gives twelve lunations for each year, with seven of a remainder, to be distributed among the years of the period. The period of Meton, therefore, consisted of twelve years containing twelve months each, and seven years containing thirteen months each; and these last formed the third, fifth, eighth, eleventh, thirteenth, sixteenth, and nineteenth years of the cycle. As it had now been discovered that the exact length of the lunation is a little more than twenty-nine and a half days, it became necessary to abandon the alternate succession of full and deficient months; and, in order to preserve a more accurate correspondence between the civil month and the lunation, Meton divided the cycle into 125 full months of thirty days, and 110 deficient months of twenty-nine days each. The number of days in the period was therefore 6940. In order to distribute the deficient months through the period in the most equable manner, the whole period may be regarded as consisting of 235 full months of thirty days, or of 7050 days, from which 110 days are to be deducted. This gives one day to be suppressed in sixty-four; so that if we suppose the months to contain each thirty days, and then omit every sixty-fourth day in reckoning from the beginning of the period, those months in which the omission takes place will, of course, be the deficient months.

The number of days in the period being known, it is easy to ascertain its accuracy both in respect of the solar and lunar motions. The exact length of nineteen solar years is 19 × 365.2422 = 6939.6018 days, or 6939 days 14 hours 26.592 minutes; hence the period, which is exactly 6940 days, exceeds nineteen revolutions of the sun by nine and a half hours nearly. On the other hand, the exact time of a synodic revolution of the moon is 29.530588 days; 235 lunations, therefore, contain 235 × 29.530588 = 6939.68818 days, or 6939 days 16 hours 31 minutes, so that the period exceeds 235 lunations by only seven and a half hours.

After the Metonic cycle had been in use about a century, a correction was proposed by Calippus. At the end of four cycles, or seventy-six years, the accumulation of the seven and a half hours of difference between the cycle and 235 lunations amounts to thirty hours, or one whole day and six hours. Calippus, therefore, proposed to quadruple the period of Meton, and deduct one day at the end of that time by changing one of the full months into a deficient month. The period of Calippus, therefore, consisted of three Metonic cycles of 6940 days each, and a period of 6939 days; and its error in respect of the moon, consequently, amounted only to six hours, or to one day in 304 years. This period exceeds seventy-six true solar years by fourteen hours and a quarter nearly, but coincides exactly with seventy-six Julian years; and in the time of Calippus the length of the solar year was almost universally supposed to be exactly 365? days. The Calippic period is frequently referred to as a date by Ptolemy.

Ecclesiastical Calendar.-The ecclesiastical calendar, which is adopted in all the Catholic, and most of the Protestant countries of Europe, is luni-solar, being regulated partly by the solar, and partly by the lunar year,-a circumstance which gives rise to the [v.04 p.0992]distinction between the movable and immovable feasts. So early as the 2nd century of our era, great disputes had arisen among the Christians respecting the proper time of celebrating Easter, which governs all the other movable feasts. The Jews celebrated their passover on the 14th day of the first month, that is to say, the lunar month of which the fourteenth day either falls on, or next follows, the day of the vernal equinox. Most Christian sects agreed that Easter should be celebrated on a Sunday. Others followed the example of the Jews, and adhered to the 14th of the moon; but these, as usually happened to the minority, were accounted heretics, and received the appellation of Quartodecimans. In order to terminate dissensions, which produced both scandal and schism in the church, the council of Nicaea, which was held in the year 325, ordained that the celebration of Easter should thenceforth always take place on the Sunday which immediately follows the full moon that happens upon, or next after, the day of the vernal equinox. Should the 14th of the moon, which is regarded as the day of full moon, happen on a Sunday, the celebration Of Easter was deferred to the Sunday following, in order to avoid concurrence with the Jews and the above-mentioned heretics. The observance of this rule renders it necessary to reconcile three periods which have no common measure, namely, the week, the lunar month, and the solar year; and as this can only be done approximately, and within certain limits, the determination of Easter is an affair of considerable nicety and complication. It is to be regretted that the reverend fathers who formed the council of Nicaea did not abandon the moon altogether, and appoint the first or second Sunday of April for the celebration of the Easter festival. The ecclesiastical calendar would in that case have possessed all the simplicity and uniformity of the civil calendar, which only requires the adjustment of the civil to the solar year; but they were probably not sufficiently versed in astronomy to be aware of the practical difficulties which their regulation had to encounter.

Dominical Letter.-The first problem which the construction of the calendar presents is to connect the week with the year, or to find the day of the week corresponding to a given day of any year of the era. As the number of days in the week and the number in the year are prime to one another, two successive years cannot begin with the same day; for if a common year begins, for example, with Sunday, the following year will begin with Monday, and if a leap year begins with Sunday, the year following will begin with Tuesday. For the sake of greater generality, the days of the week are denoted by the first seven letters of the alphabet, A, B, C, D, E, F, G, which are placed in the calendar beside the days of the year, so that A stands opposite the first day of January, B opposite the second, and so on to G, which stands opposite the seventh; after which A returns to the eighth, and so on through the 365 days of the year. Now if one of the days of the week, Sunday for example, is represented by E, Monday will be represented by F, Tuesday by G, Wednesday by A, and so on; and every Sunday through the year will have the same character E, every Monday F, and so with regard to the rest. The letter which denotes Sunday is called the Dominical Letter, or the Sunday Letter; and when the dominical letter of the year is known, the letters which respectively correspond to the other days of the week become known at the same time.

Solar Cycle.-In the Julian calendar the dominical letters are readily found by means of a short cycle, in which they recut in the same order without interruption. The number of years in the intercalary period being four, and the days of the week being seven, their product is 4 × 7 = 28; twenty-eight years is therefore a period which includes all the possible combinations of the days of the week with the commencement of the year. This period is called the Solar Cycle, or the Cycle of the Sun, and restores the first day of the year to the same day of the week. At the end of the cycle the dominical letters return again in the same order on the same days of the month; hence a table of dominical letters, constructed for twenty-eight years, will serve to show the dominical letter of any given year from the commencement of the era to the Reformation. The cycle, though probably not invented before the time of the council of Nicaea, is regarded as having commenced nine years before the era, so that the year one was the tenth of the solar cycle. To find the year of the cycle, we have therefore the following rule:-Add nine to the date, divide the sum by twenty-eight; the quotient is the number of cycles elapsed, and the remainder is the year of the cycle. Should there be no remainder, the proposed year is the twenty-eighth or last of the cycle. This rule is conveniently expressed by the formula ((x + 9) / 28)r, in which x denotes the date, and the symbol r denotes that the remainder, which arises from the division of x + 9 by 28, is the number required. Thus, for 1840, we have (1840 + 9) / 28 = 66-1/28; therefore ((1840 + 9) / 28)r = 1, and the year 1840 is the first of the solar cycle. In order to make use of the solar cycle in finding the dominical letter, it is necessary to know that the first year of the Christian era began with Saturday. The dominical letter of that year, which was the tenth of the cycle, was consequently B. The following year, or the 11th of the cycle, the letter was A; then G. The fourth year was bissextile, and the dominical letters were F, E; the following year D, and so on. In this manner it is easy to find the dominical letter belonging to each of the twenty-eight years of the cycle. But at the end of a century the order is interrupted in the Gregorian calendar by the secular suppression of the leap year; hence the cycle can only be employed during a century. In the reformed calendar the intercalary period is four hundred years, which number being multiplied by seven, gives two thousand eight hundred years as the interval in which the coincidence is restored between the days of the year and the days of the week. This long period, however, may be reduced to four hundred years; for since the dominical letter goes back five places every four years, its variation in four hundred years, in the Julian calendar, was five hundred places, which is equivalent to only three places (for five hundred divided by seven leaves three); but the Gregorian calendar suppresses exactly three intercalations in four hundred years, so that after four hundred years the dominical letters must again return in the same order. Hence the following table of dominical letters for four hundred years will serve to show the dominical letter of any year in the Gregorian calendar for ever. It contains four columns of letters, each column serving for a century. In order to find the column from which the letter in any given case is to be taken, strike off the last two figures of the date, divide the preceding figures by four, and the remainder will indicate the column. The symbol X, employed in the formula at the top of the column, denotes the number of centuries, that is, the figures remaining after the last two have been struck off. For example, required the dominical letter of the year 1839? In this case X = 18, therefore (X/4)r = 2; and in the second column of letters, opposite 39, in the table we find F, which is the letter of the proposed year.

It deserves to be remarked, that as the dominical letter of the first year of the era was B, the first column of the following table will give the dominical letter of every year from the commencement of the era to the Reformation. For this purpose divide the date by 28, and the letter opposite the remainder, in the first column of figures, is the dominical letter of the year. For example, supposing the date to be 1148. On dividing by 28, the remainder is 0, or 28; and opposite 28, in the first column of letters, we find D, C, the dominical letters of the year 1148.

Lunar Cycle and Golden Number.-In connecting the lunar month with the solar year, the framers of the ecclesiastical calendar adopted the period of Meton, or lunar cycle, which they supposed to be exact. A different arrangement has, however, been followed with respect to the distribution of the months. The lunations are supposed to consist of twenty-nine and thirty days alternately, or the lunar year of 354 days; and in order to make up nineteen solar years, six embolismic or intercalary months, of thirty days each, are introduced in the course of the cycle, and one of twenty-nine days is added at the [v.04 p.0993]end. This gives 19 × 354 + 6 × 30 + 29 = 6935 days, to be distributed among 235 lunar months. But every leap year one day must be added to the lunar month in which the 29th of February is included. Now if leap year happens on the first, second or third year of the period, there will be five leap years in the period, but only four when the first leap year falls on the fourth. In the former case the number of days in the period becomes 6940 and in the latter 6939. The mean length of the cycle is therefore 6939? days, agreeing exactly with nineteen Julian years.

Table I.-Dominical Letters.

Years of the

Century.

Continue Reading

Other books by Various

More
Yule Logs

Yule Logs

Young Adult

5.0

It was a grand success. Every one said so; and moreover, every one who witnessed the experiment predicted that the Mermaid would revolutionize naval warfare as completely as did the world-famous Monitor. Professor Rivers, who had devoted the best years of his life to perfecting his wonderful invention, struggling bravely on through innumerable disappointments and failures, undaunted by the sneers of those who scoffed, or the significant pity of his friends, was so overcome by his signal triumph that he fled from the congratulations of those who sought to do him honour, leaving to his young assistants the responsibility of restoring the marvellous craft to her berth in the great ship-house that had witnessed her construction. These assistants were two lads, eighteen and nineteen years of age, who were not only the Professor's most promising pupils, but his firm friends and ardent admirers. The younger, Carlos West Moranza, was the only son of a Cuban sugar-planter, and an American mother who had died while he was still too young to remember her. From earliest childhood he had exhibited so great a taste for machinery that, when he was sixteen, his father had sent him to the United States to be educated as a mechanical engineer in one of the best technical schools of that country. There his dearest chum was his class-mate, Carl Baldwin, son of the famous American shipbuilder, John Baldwin, and heir to the latter's vast fortune. The elder Baldwin had founded the school in which his own son was now being educated, and placed at its head his life-long friend, Professor Alpheus Rivers, who, upon his patron's death, had also become Carl's sole guardian. In appearance and disposition young Baldwin was the exact opposite of Carlos Moranza, and it was this as well as the similarity of their names that had first attracted the lads to each other. While the young Cuban was a handsome fellow, slight of figure, with a clear olive complexion, impulsive and rash almost to recklessness, the other was a typical Anglo-Saxon American, big, fair, and blue-eyed, rugged in feature, and slow to act, but clinging with bulldog tenacity to any idea or plan that met with his favour. He invariably addressed his chum as "West," while the latter generally called him "Carol."

You'll also like

Chapters
Read Now
Download Book